题目描述

有$n$个正整数$x_1\sim x_n$,初始时状态均为未选。有$m$个操作,每个操作给定一个编号$i$,将$x_i$的选取状态取反。每次操作后,你需要求出选取的数中有多少个互质的无序数对。


输入格式

第一行两个整数$n,m$。第二行$n$个整数$x_1\sim x_n$。接下来$m$行每行一个整数。


输出格式

$m$行,每行一个整数表示答案。


样例

样例输入:

4 5
1 2 3 4
1
2
3
4
1

样例输出:

0
1
3
5
2


数据范围与提示

对于$20\%$的数据,$n,m\leqslant 1,000$。
对于另外$30\%$的数据,$x_i\leqslant 100$。
对于$100\%$的数据,$n,m\leqslant 200,000$,$x_i\leqslant 500,000$,$1\leqslant i\leqslant n$。


题解

我们先来设三个量:

  $\alpha.s(i)$表示为$i$的倍数的数的个数。

  $\beta.g(i)$表示 $gcd$为$i$的倍数的数个数。

  $\gamma.f(i)$表示$gcd$为$i$的数的个数。

$s(i)$很好就能求出,而$g(i)=\frac{s(i)\times (s(i)-1))}{2}$,但是我们需要的是$f(i)$,该怎么办呢?

显然,$g(i)=\sum \limits_{i|d}f(d)$,那有又什么用呢?

这里就需要用到一个神奇的东东了:第二类莫比乌斯反演(详见信息学奥赛之数学一本通P145中间)。

于是这个式子便变成了:$f(i)=\sum \limits_{i|d}\mu(\frac{d}{i})g(d)$。

现在我们需要考虑的就只有修改操作了,每次插入或删除一个数的时候只要暴力枚举其因数即可。

时间复杂度:$\Theta(m\sqrt{\max x_i})$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int n,m;
long long a[200001];
long long s[500001],g[500001],f[500001];
long long mu[500001],prime[500001],cnt;
bool vis[200001],v[500001];
long long ans,mx;
void pre_work()
{
mu[1]=1;
for(int i=2;i<=mx;i++)
{
if(!v[i])mu[prime[cnt++]=i]=-1;
for(int j=0;j<cnt&&i*prime[j]<=mx;j++)
{
v[i*prime[j]]=1;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else{mu[i*prime[j]]=0;break;}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]),mx=max(mx,a[i]);
pre_work();
while(m--)
{
int x,flag;
scanf("%d",&x);
flag=a[x];
if(vis[x])
{
for(int i=1;i*i<=flag;i++)
if(!(flag%i))
{
s[i]--;
ans-=mu[i]*g[i];
g[i]=s[i]*(s[i]-1)/2;
ans+=mu[i]*g[i];
if(flag/i!=i)
{
s[flag/i]--;
ans-=mu[flag/i]*g[flag/i];
g[flag/i]=s[flag/i]*(s[flag/i]-1)/2;
ans+=mu[flag/i]*g[flag/i];
}
}
vis[x]=0;
}
else
{
for(int i=1;i*i<=flag;i++)
if(!(flag%i))
{
s[i]++;
ans-=mu[i]*g[i];
g[i]=s[i]*(s[i]-1)/2;
ans+=mu[i]*g[i];
if(flag/i!=i)
{
s[flag/i]++;
ans-=mu[flag/i]*g[flag/i];
g[flag/i]=s[flag/i]*(s[flag/i]-1)/2;
ans+=mu[flag/i]*g[flag/i];
}
}
vis[x]=1;
}
printf("%lld\n",ans);
}
return 0;
}

rp++

[CSP-S模拟测试]:gcd(莫比乌斯反演)的更多相关文章

  1. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  2. HDU1695 GCD(莫比乌斯反演)

    传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...

  3. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  4. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  5. HYSBZ - 2818 Gcd (莫比乌斯反演)

    莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...

  6. 【BZOJ2818】Gcd [莫比乌斯反演]

    Gcd Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...

  7. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  8. BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discu ...

  9. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

随机推荐

  1. Bootstrap 学习笔记13 附加导航插件

    附加导航代码: <style> a:focus { outline: none; } .nav-pills { width: 150px; } .nav-pills.affix { top ...

  2. LeetCode 337. House Robber III 动态演示

    每个节点是个房间,数值代表钱.小偷偷里面的钱,不能偷连续的房间,至少要隔一个.问最多能偷多少钱 TreeNode* cur mp[{cur, true}]表示以cur为根的树,最多能偷的钱 mp[{c ...

  3. HTML DOM cursor 属性

    值 描述 url 需被使用的自定义光标的URL 注释:请在此列表的末端始终定义一种普通的光标,以防没有由 URL 定义的可用光标. default 默认光标(通常是一个箭头) auto 默认.浏览器设 ...

  4. python包的补充

    1.包A和包B下有同名模块也不会冲突,如A.a与B.a来自俩个命名空间 2.常见目录结构 import os 2 os.makedirs('glance/api') 3 os.makedirs('gl ...

  5. 禁止html复制文本

    <body class="content" oncontextmenu="return false" onselectstart="return ...

  6. Nacos-作为Sring cloud 注册发现

    Nacos:一个更易于构建云原生应用的动态服务发现.配置管理和服务管理平台. https://nacos.io/zh-cn/index.html 功能: 动态服务配置 服务发现和管理 动态DNS服务 ...

  7. tornado ioloop current和instance的一些区别

    import tornado.ioloop # 此时_current没有instance print dir(tornado.ioloop.IOLoop._current) # 通过instance ...

  8. ES6——字符串

    1.多了两个方法       1)startsWith       2)endsWith 2.模板字符串(`..`)—— 方便字符串连接   `反单引号        1)可以直接把表达式塞进去 &a ...

  9. 搭建个人使用服务器-vultr

    内容来自https://www.noobyy.com/31.html  谢谢教程,侵权的话会立即删除! 1. 首先进入Vultr官网注册:https://www.vultr.com 注册完开始充值,我 ...

  10. java定义类

    package java04; /* * 定义一个类,用来模拟“学生”,其中包含量两个组合部分 * * 格式: * public class ClassName{ * //成员变量 * //成员方法 ...