LOJ 2304 「NOI2017」泳池——思路+DP+常系数线性齐次递推
题目:https://loj.ac/problem/2304
看了各种题解……
\( dp[i][j] \) 表示有 i 列、第 j 行及以下默认合法,第 j+1 行至少有一个非法格子的概率,满足最大合法矩形面积 <= lm。其中第 j 行及以下的部分的贡献是 1 而不是 q 的几次方。
那么有 \( dp[i][j]=dp[i][j+1]*p^i + \sum\limits_{k=1}^{i}dp[k-1][j+1]*p^{k-1}*(1-p)*dp[i-k][j] \)
注意到当 i>k 的时候,最底下一行必然有至少一个位置是非法的。所以令 \(ans_i\) 表示 i 列的概率,有 \( ans_i = \sum\limits_{j=1}^{i}ans_{j-1}*(1-p)*dp[i-j][1]*p^{i-j} \)
\(ans_i\) 的初值就是 dp[i][0] 。注意 dp[0][*]=1 。然后可以用常系数线性齐次递推的知识优化。
注意清空数组。注意别把 n 的值真的改掉。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,M=N<<,mod=;
int upt(int x){while(x>=mod)x-=mod;while(x<)x+=mod;return x;}
int pw(int x,int k)
{int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;} int n,q,q2,f[N][N],bin[N],a[N],ans[M],b[M],c[M],lm;
void Mul(int *u,int *v)//(lm-1)'
{
memset(c,,sizeof c);
for(int i=;i<lm;i++)
for(int j=;j<lm;j++)
c[i+j]=(c[i+j]+(ll)u[i]*v[j])%mod; for(int i=*(lm-);i>=lm;i--)
if(c[i])
for(int j=;j<=lm;j++)
c[i-j]=(c[i-j]+(ll)c[i]*a[j])%mod;
memcpy(u,c,sizeof *lm);//0~lm-1
}
int solve(int tmp)
{
lm=tmp; memset(f,,sizeof f);
for(int j=;j<=lm+;j++)f[][j]=;//lm+1 not lm!!!
for(int i=;i<=lm;i++)
for(int j=lm/i;j>=;j--)
{
int tp=(ll)f[i][j+]*bin[i]%mod;
for(int k=;k<=i;k++)
{
int ml=(ll)f[k-][j+]*f[i-k][j]%mod;
ml=(ll)ml*q2%mod*bin[k-]%mod;
tp=upt(tp+ml);
}
f[i][j]=tp;
}
if(n<=lm)return f[n][]; lm++; for(int i=;i<=lm;i++)
{
int tp=(ll)f[i-][]*bin[i-]%mod;
a[i]=(ll)tp*q2%mod;//not lm-i
}
memset(ans,,sizeof ans);////
memset(b,,sizeof b);////
ans[]=b[]=; int tn=n;//////
while(tn)
{
if(tn&)Mul(ans,b); Mul(b,b); tn>>=;
}
int ret=;
for(int i=;i<lm;i++)
ret=(ret+(ll)ans[i]*f[i][])%mod;
return ret;
}
int main()
{
int x,y,k;scanf("%d%d%d%d",&n,&k,&x,&y);
q=(ll)x*pw(y,mod-)%mod; q2=upt(-q);
bin[]=;
for(int i=;i<=k;i++)bin[i]=(ll)bin[i-]*q%mod;
printf("%d\n",upt(solve(k)-solve(k-)));
return ;
}
LOJ 2304 「NOI2017」泳池——思路+DP+常系数线性齐次递推的更多相关文章
- LOJ#2304. 「NOI2017」泳池
$n \leq 1e9$底边长的泳池,好懒啊泥萌自己看题吧,$k \leq 1000$.答案对998244353取膜. 现在令$P$为安全,$Q$为危险的概率.刚好$K$是极其不好算的,于是来算$\l ...
- LOJ 3090 「BJOI2019」勘破神机——斯特林数+递推式求通项+扩域
题目:https://loj.ac/problem/3090 题解:https://www.luogu.org/blog/rqy/solution-p5320 1.用斯特林数把下降幂化为普通的幂次求和 ...
- 【BZOJ4944】[NOI2017]泳池(线性常系数齐次递推,动态规划)
[BZOJ4944][NOI2017]泳池(线性常系数齐次递推,动态规划) 首先恰好为\(k\)很不好算,变为至少或者至多计算然后考虑容斥. 如果是至少的话,我们依然很难处理最大面积这个东西.所以考虑 ...
- loj #2305. 「NOI2017」游戏
#2305. 「NOI2017」游戏 题目描述 小 L 计划进行 nnn 场游戏,每场游戏使用一张地图,小 L 会选择一辆车在该地图上完成游戏. 小 L 的赛车有三辆,分别用大写字母 AAA.BBB. ...
- 「NOI2017」泳池
DP式子比后面的东西难推多了 LOJ2304 Luogu P3824 UOJ #316 题意 给定一个长度为$ n$高为$ \infty$的矩形 每个点有$ 1-P$的概率不可被选择 求最大的和底边重 ...
- 【BZOJ4944】【NOI2017】泳池 概率DP 常系数线性递推 特征多项式 多项式取模
题目大意 有一个\(1001\times n\)的的网格,每个格子有\(q\)的概率是安全的,\(1-q\)的概率是危险的. 定义一个矩形是合法的当且仅当: 这个矩形中每个格子都是安全的 必须紧贴网格 ...
- LOJ 6435 「PKUSC2018」星际穿越——DP+倍增 / 思路+主席树
题目:https://loj.ac/problem/6435 题解:https://www.cnblogs.com/HocRiser/p/9166459.html 自己要怎样才能想到怎么做呢…… dp ...
- loj#2305. 「NOI2017」游戏 2-sat
链接 https://loj.ac/problem/2305 https://www.luogu.org/problemnew/show/P3825 思路 3-sat神马的就不要想了,NP问题 除去x ...
- loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)
题意 题目链接 Sol 质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案 那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数 \(f[i ...
随机推荐
- shell脚本一一项目4
主题:一键查看服务器使用率 cpu vmstat suyu wa memery free disk df -h /dev tcp连接数 netstat cpu(){ used=$(vmstat ...
- 16/7/11_PHP-图形图像操作
GD库简介 GD指的是Graphic Device,PHP的GD库是用来处理图形的扩展库,通过GD库提供的一系列API,可以对图像进行处理或者直接生成新的图片. PHP除了能进行文本处理以外,通过GD ...
- javascript获取select 的id与值
javascript获取select 的id与值 <script type="text/javascript"> function showOptionId () { ...
- 同余dp
先验知识: 余数的计算公式:c = a -⌊ a/b⌋ * b 其中,⌊ ⌋为向下取整运算符,向下取整运算称为Floor,用数学符号⌊ ⌋表示 题目: Consider an arbitrary se ...
- python实现处理excel单元格中的数据
实现代码如下: # 将数据单元格(格式为:参数名=值)里的数据以键值对的形式放入字典中,返回该字典 class get_string: def cut_string(self,string): # 将 ...
- mybatis使用Dao和Mapper方式
1.配置jdcp.properties数据库连接文件 #mysql database setting jdbc.type=mysql jdbc.driver=com.mysql.jdbc.Driver ...
- [poj3074]Sudoku(舞蹈链)
题目链接:http://poj.org/problem?id=3074 舞蹈链精确覆盖的经典题目,一个数独每个位置的要求,可以得到以下四个约束1.每个位置有且只有一个数字2.每个位置的数字在一行只能出 ...
- Robot Framework 常见问题处理方式
1.运行testcase报错error 2解决办法 打开python的scripts目录,看看是否有pybot.bat文件,没有则创建一个 pybot.bat内容: @Echo off python ...
- 12、numpy——数学函数
NumPy 数学函数 NumPy 包含大量的各种数学运算的函数,包括三角函数,算术运算的函数,复数处理函数等. 1.三角函数 NumPy 提供了标准的三角函数:sin().cos().tan(). i ...
- JS的组成和变量
JavaScript中的变量和数据类型 Js做客户端语言 按照相关的Js语法,去操作页面中的元素,有时还要操作浏览器里面的一些功能 Js由三部分组成: ECMAScript(ES):描述了该语言的语法 ...