题面

传送门

分析

法1(区间DP):

首先,我们可以把连续的相等区间缩成一个数,用unique来实现,不影响结果

{1,2,2,3,3,3,5,3,4}->{1,2,3,5,3,4}

先从一个极端情况来考虑,a={1,2,3,4,5},此时答案显然为4,从1个点出发,先把它变成和左边的点相等,再把它变成和右边的点相等,一共需n-1次

假设我们已经把中间某个区间[i,j]变成相同颜色的一段,如{1,5,5,5,5,4}

如果a[i-1]!=a[j+1],则需要变两次,如果a[i-1]=a[j+1],只需要变一次了,

所以我们需要求出形如a[i-1]=a[j+1]的数对个数ans,由于每个这样的数对会少变一次

所以答案就是n-1-ans

那么如何求出ans呢

区间DP,\(dp[i][j]\)表示区间\([i,j]\)外的数对个数

则\(dp[i][j]=\begin{cases} max(dp[i-1][j],dp[i][j+1]) \\ max(dp[i-1][j],dp[i][j+1],dp[i-1][j+1]+1),a[i-1]=a[j+1]\end{cases}\)

初始值\(dp[1][n]\)=0

最后得到的\(dp[i][i]\)表示除了i之外的数列中的数对个数,即从i开始变需要变n-1-\(dp[i][i]\)次

取\(dp[i][i]\)的最大值即可

时间复杂度\(O(n^2)\)


法二(CF官方题解的做法):

由法一的分析,我们注意到数对会形成回文子序列

如{1,3,2,5,3,1},则1 3 2 3 1就形成了回文子序列,

显然变化次数为n-(回文子序列长度+1)/2

因此我们只要求出最长的回文子序列长度,可以把原串和反串跑LCS,时间复杂度\(O(n^2)\)

用LCS转LIS可以优化到\(O(n\log n)\)

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#define maxn 5005
using namespace std;
int n;
int a[maxn];
int dp[maxn][maxn];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
n=unique(a+1,a+1+n)-a-1;
dp[1][n]=0;
for(int len=n-1;len>=1;len--){
for(int i=1;i+len-1<=n;i++){
int j=i+len-1;
dp[i][j]=max(dp[i-1][j],dp[i][j+1]);
if(i-1>=0&&j+1<=n&&a[i-1]==a[j+1]) dp[i][j]=max(dp[i][j],dp[i-1][j+1]+1);
}
}
int ans=0;
for(int i=1;i<=n;i++) ans=max(ans,dp[i][i]);
printf("%d\n",n-1-ans);
}

Codeforces 1114D(区间DP)的更多相关文章

  1. CodeForces 512B(区间dp)

    D - Fox And Jumping Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64 ...

  2. codeforces 1140D(区间dp/思维题)

    D. Minimum Triangulation time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  3. Timetable CodeForces - 946D (区间dp)

    大意: n天, 每天m小时, 给定课程表, 每天的上课时间为第一个1到最后一个1, 一共可以逃k次课, 求最少上课时间. 每天显然是独立的, 对每天区间dp出逃$x$次课的最大减少时间, 再对$n$天 ...

  4. CodeForces - 1107E 区间DP

    和紫书上的Blocks UVA - 10559几乎是同一道题,只不过是得分计算不同 不过看了半天紫书上的题才会的,当时理解不够深刻啊 不过这是一道很好区间DP题 细节看代码 #include<c ...

  5. CodeForces 149D 区间DP Coloring Brackets

    染色有三个条件: 对于每个点来说要么不染色,要么染红色,要么染蓝色 对于每对配对的括号来说,有且只有一个一边的括号被染色 相邻的括号不能染成相同的颜色 首先可以根据给出的括号序列计算出括号的配对情况, ...

  6. Zuma CodeForces - 607B (区间DP)

    大意: 给定字符串, 每次删除一个回文子串, 求最少多少次删完. #include <iostream> #include <cstdio> #define REP(i,a,n ...

  7. Recovering BST CodeForces - 1025D (区间dp, gcd)

    大意: 给定$n$个数, 任意两个$gcd>1$的数间可以连边, 求是否能构造一棵BST. 数据范围比较大, 刚开始写的$O(n^3\omega(1e9))$竟然T了..优化到$O(n^3)$才 ...

  8. Codeforces 940 区间DP单调队列优化

    A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...

  9. Codeforces 1114D Flood Fill (区间DP or 最长公共子序列)

    题意:给你n个颜色块,颜色相同并且相邻的颜色块是互相连通的(连通块).你可以改变其中的某个颜色块的颜色,不过每次改变会把它所在的连通块的颜色也改变,问最少需要多少次操作,使得n个颜色块的颜色相同. 例 ...

随机推荐

  1. 【学习总结】Python-3-Python数字运算与数学函数

    菜鸟教程-Python3-Python数字 注:这一节链接中的内容比较多,表格中的具体函数耐心点进去看看 1-变量在使用前必须先"定义"(即赋予变量一个值),否则会出现错误 2-不 ...

  2. linux系统部署war包,查看tomcat日志

    1.部署war包app/tomcat/bin在tomcat/bin 目录下启动 .startup.sh,在启动过程中tomcat会对war包进行解压,形成相应的项目目录 执行命令:./startup. ...

  3. geometry_msgs的ros message 类型赋值

    test_custom_particles.cpp // // Created by gary on 2019/8/27. // #include <ros/ros.h> #include ...

  4. vue,一路走来(2)--路由vue-router

    安装 Mint UI cnpm install mint-ui --save 如果你的项目会用到 Mint UI 里较多的组件,最简单的方法就是把它们全部引入.此时需要在入口文件 main.js 中: ...

  5. Linux命令(干货)

    @ vim 编辑快捷键 ctrl + n 是自动补齐 ctrl + p 是往上选择 ctrl + f 是下一屏幕 ctrl + b 是上一屏幕 w:是移动一个单词 b:是向前一个单词 d^:当前行中, ...

  6. 「校内训练 2019-04-23」越野赛车问题 动态dp+树的直径

    题目传送门 http://192.168.21.187/problem/1236 http://47.100.137.146/problem/1236 题解 题目中要求的显然是那个状态下的直径嘛. 所 ...

  7. 洛谷P4331[BOI2004] sequence

    博客复活? 这个题很模板啊.随便上个左偏树.之前第一遍写对了.然后今天翻出来又写了一遍发现了一个奇奇怪怪的问题. 对比如下 上面的是AC 下面的WA 真的是一个很蠢的问题...你TM堆顶都弹出来了,堆 ...

  8. docker:python与docker

    一:环境准备 pycharm:专业版(windows) docker ce 免费版(ubantu16.04) os: os:防火墙 二:开发流程 pycharm中开发环境搭建的工作原理: 1. pyc ...

  9. maven插件之maven-surefire-plugin,junit单元测试报告和sonar测试覆盖率的整合说明

    POM中配置的如下: <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId> ...

  10. 【leetcode】126. Word Ladder II

    题目如下: 解题思路:DFS或者BFS都行.本题的关键在于减少重复计算.我采用了两种方法:一是用字典dic_ladderlist记录每一个单词可以ladder的单词列表:另外是用dp数组记录从star ...