Description

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

Input

输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,'0'表示红色,'1'表示蓝色。

Output

输出文件paint.out包含一个整数,最多能正确粉刷的格子数。

Sample Input

3 6 3
111111
000000
001100

Sample Output

16

HINT

30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。 100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。

Solution

啊..感觉这个dp不难推啊。。就是推不出来

设$f[i][j]$表示前i条刷j次能刷对的格子数

$g[i][j][k]$表示第i行刷了j次前k个能刷的最大格子数

先把g算出来,然后用来转移$f[i][j]$

g的转移:

c数组为前缀和,c[i][j]表示第i行1~j的前缀和(这里用来处理两种颜色)

$$g[i][j][k]=max(g[i][j][k],g[i][j-1][l]+max(c[i][k]-c[i][l],k-l-c[i][k]+c[i][l]))$$

就是找个转移点然后涂蓝色还是涂红色取个max这样,效率$O(n^4)$

f的转移:

$$f[i][j]=max(f[i][j],f[i-1][j-k]+g[i][k][m])$$

有了g这个就很好推了

我就没有想到用个g来优化转移,死活想不出来

答案就扫一遍求个max就好

总复杂度是$O(n^4+n^2t)$

#include <bits/stdc++.h>

using namespace std ;

#define N 2510

int a[  ][  ] , c[  ][  ] ;
int n , m , t ;
int f[ ][ N ] ;
//前i条刷j次能刷对的格子数
int g[ ][ ][ ] ;
//第i行刷了j次前k个能刷的最大格子数 int main() {
scanf( "%d%d%d" , &n , &m , &t ) ;
for( int i = ; i <= n ; i ++ ) {
char ch[ ] ;
scanf( "%s" , ch+ ) ;
for( int j = ; j <= m ; j ++ ) {
c[ i ][ j ] = c[ i ][ j - ] + ( ch[ j ] ^ '' ) ;
}
}
for( int i = ; i <= n ; i ++ ) {
for( int j = ; j <= m ; j ++ ) {
for( int k = ; k <= m ; k ++ ) {
for( int l = j - ; l < k ; l ++ ) {
g[i][j][k]=max(g[i][j][k],g[i][j-][l]+max(c[i][k]-c[i][l],k-l-c[i][k]+c[i][l]));
}
}
}
}
for( int i = ; i <= n ; i ++ ) {
for( int j = ; j <= t ; j ++ ) {
for( int k = ; k <= min( j , m ) ; k ++ ) {
f[ i ][ j ] = max( f[ i ][ j ] , f[ i - ][ j - k ] + g[ i ][ k ][ m ] ) ;
}
}
}
int ans = ;
for( int i = ; i <= t ; i ++ ) ans = max( ans , f[ n ][ i ] ) ;
printf( "%d\n" , ans ) ;
return ;
}

BZOJ1296: [SCOI2009]粉刷匠 DP的更多相关文章

  1. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  2. bzoj1296: [SCOI2009]粉刷匠(DP)

    1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...

  3. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  4. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  5. 【Dp】Bzoj1296 [SCOI2009] 粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  6. 2018.09.02 bzoj1296: [SCOI2009]粉刷匠(dp套dp)

    传送门 dp好题. 先推出对于每一行花费k次能最多粉刷的格子数. 然后再推前i行花费k次能最多粉刷的格子数. 代码: #include<bits/stdc++.h> #define N 5 ...

  7. BZOJ1296 [SCOI2009]粉刷匠 【dp】

    题目 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被粉刷 ...

  8. BZOJ1296 [SCOI2009]粉刷匠 动态规划 分组背包

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1296 题意概括 有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝 ...

  9. bzoj1296: [SCOI2009]粉刷匠

    dp. 用到俩次dp,用1和0代表俩种颜色,首先对于每块木板我们进行一次dp,g[i][j]代表前j个格子刷i次最多能涂到几个格子. 则 g[i][j]=max(g[i-1][k],max(cnt[j ...

随机推荐

  1. inux man命令的使用方法(转)

    原文:http://www.cnblogs.com/hnrainll/archive/2011/09/06/2168604.html Linux的man手册共有以下几个章节: 代號 代表內容 1 使用 ...

  2. (3.10)mysql基础深入——mysqld 服务器与客户端连接过程 源码分析【待写】

    (3.10)mysql基础深入——mysqld 服务器与客户端连接过程 源码分析[待写]

  3. SQL Server中灾难时备份结尾日志(Tail of log)的两种方法

    转自:http://www.cnblogs.com/CareySon/archive/2012/02/23/2365006.html SQL Server中灾难时备份结尾日志(Tail of log) ...

  4. 前端 HTML文档 详解

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. listview点击控件显示EditText,键盘弹出消失的解决方法:

    1.软键盘弹出后消失解决方法 AndoridManifet 在activity中添加: android:windowSoftInputMode="adjustPan" 2.使用方式 ...

  6. UIStoryboard跳转界面

    /**1.创建Storyboard,加载Storyboard的名字,这里是自己创建的Storyboard的名字*/ UIStoryboard *storyboard = [UIStoryboard s ...

  7. POJ3087:Shuffle'm Up(模拟)

    http://poj.org/problem?id=3087 Description A common pastime for poker players at a poker table is to ...

  8. Linux文本编辑器快捷方式

  9. Django实现cookie&session以及认证系统

    COOKIE&SESSION 知识储备 由于http协议无法保持状态,但实际情况,我们却又需要“保持状态”,因此cookie就是在这样一个场景下诞生. cookie的工作原理是:由服务器产生内 ...

  10. Object之总结(一)

    一.Object类中一共有12个方法.一个私有方法,两个保护方法,9个公共方法.另外还有一个静态代码块. 1.registerNatives方法.私有静态本地无参数无返回值. 2.finalize方法 ...