链接

题目大意:

定义一个问题: 求集合$S$的最小划分数,使得每个划分内任意两个元素积均为完全平方数.

给定$n$元素序列$a$, 对$a$的所有子区间, 求出上述问题的结果, 最后要求输出所有结果的出现次数

可以先考虑每个划分中的数需要满足什么条件.

假设均为正数, 则只需要所有数除去平方因子后相等即可, 负数的话, 跟正数一样, 正负分开处理即可, 再特判掉$0$.

再考虑如何求解, 因为$n$范围比较小可以支持$n^2$算法的, 直接考虑暴力求出每个子区间的结果, 最后再统计答案.

这样的话需要考虑如何$O(1)$进行转移子区间之间的结果.

考虑添加一个数$x$的情况, 如果之前已经有$x$直接并入其划分, 否则要新增一个划分

所以维护每个数最后出现位置即可.

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <set>
#include <map>
#define REP(i,a,n) for(int i=a;i<=n;++i)
using namespace std; const int N = 5e3+10;
int n, a[N], ans[N];
map<int, int> pos[2];
int cnt[N][N], z; int calc(int x) {
int r = 1;
for (int i=2; i*i<=x; ++i) if (x%i==0) {
int f = 0;
while (x%i==0) f^=1, x/=i;
if (f) r *= i;
}
if (x>1) r *= x;
return r;
} int main() {
scanf("%d", &n);
REP(i,1,n) {
int t, flag = 0;
scanf("%d", &t);
if (t<0) t=-t, flag=1;
int num = calc(t);
if (!t) REP(j,1,i-1) cnt[j][i]=cnt[j][i-1];
else if (pos[flag].count(num)) {
int x = pos[flag][num];
REP(j,1,x) cnt[j][i]=cnt[j][i-1];
REP(j,x+1,i-1) cnt[j][i]=cnt[j][i-1]+1;
} else REP(j,1,i-1) cnt[j][i]=cnt[j][i-1]+1;
if (z) REP(j,z,i-1) cnt[j][i]=1;
cnt[i][i] = 1;
if (t) pos[flag][num] = i, z = 0;
else if (!z) z = i;
}
REP(i,1,n) REP(j,i,n) ++ans[cnt[i][j]];
REP(i,1,n) printf("%d ", ans[i]);
puts("");
}

Perfect Groups CodeForces - 980D的更多相关文章

  1. Codeforces 980D Perfect Groups 计数

    原文链接https://www.cnblogs.com/zhouzhendong/p/9074164.html 题目传送门 - Codeforces 980D 题意 $\rm Codeforces$ ...

  2. Codeforces 980 D. Perfect Groups

    \(>Codeforces\space980 D. Perfect Groups<\) 题目大意 : 设 \(F(S)\) 表示在集合\(S\)中把元素划分成若干组,使得每组内元素两两相乘 ...

  3. CF 980D Perfect Groups(数论)

    CF 980D Perfect Groups(数论) 一个数组a的子序列划分仅当这样是合法的:每个划分中的任意两个数乘积是完全平方数.定义a的权值为a的最小子序列划分个数.现在给出一个数组b,问权值为 ...

  4. codeforces 980D Perfect Groups

    题意: 有这样一个问题,给出一个数组,把里面的数字分组,使得每一个组里面的数两两相乘都是完全平方数. 问最少可以分成的组数k是多少. 现在一个人有一个数组,他想知道这个数组的连续子数组中,使得上面的问 ...

  5. Codeforces980 D. Perfect Groups

    传送门:>Here< 题目大意:先抛出了一个问题——“已知一个序列,将此序列中的元素划分成几组(不需要连续)使得每一组中的任意两个数的乘积都是完全平方数.特殊的,一个数可以为一组.先要求最 ...

  6. cf980d Perfect Groups

    题意 定义一个串的权值是将其划分成 \(k\) 组,使得每一组在满足"从组里选出一个数,再从组里选出一个数,它们的乘积没有平方因子"这样的前提时的最小的 \(k\).每组的数不必相 ...

  7. Codeforces 980D

    这题其实挺水的,但我比较vegetable,交了好多次才过. 题意: 给定一个序列,把这个序列的所有连续子序列分组,每组中任意两个数相乘是个完全平方数,输出每个子序列最少分的组数: 思路: 先把每个数 ...

  8. cf round480D Perfect Groups

    题意:给一个序列,对于每一个连续的区间,区间内的数至少分成几个组,使得每个组内的数任意2个相乘是一个完全平方数(包括0). 输出每个组数的个数. $n \leq 5000 , |a_i| \leq 1 ...

  9. [codeforces 317]A. Perfect Pair

    [codeforces 317]A. Perfect Pair 试题描述 Let us call a pair of integer numbers m-perfect, if at least on ...

随机推荐

  1. python 用正则表达式把”0102030405”分成5组('0', '1'), ('0', '2'), ('0', '3'), ('0', '4'), ('0', '5')

    把”0102030405”分成5组('0', '1'), ('0', '2'), ('0', '3'), ('0', '4'), ('0', '5') re.findall(r"(\d)(\ ...

  2. eclipse里error报错Target runtime com.genuitec.runtime.generic.jee60 is not defined.

    eclipse里error报错Target runtime com.genuitec.runtime.generic.jee60 is not defined. eclipse里error报错解决办法 ...

  3. jquery easyUI相关

    jquery easyUI相关===================================easyUI表单验证处理//jquery easyUI 表单验证不通过让光标定位在第一个未通过验证的 ...

  4. C/C++之全局、static对象/变量的初始化问题

    关于全局.static对象/变量的初始化问题 1. 全局变量.static变量的初始化时机:main()函数执行之前(或者说main中第一个用户语句执行之前). 2. 初始化顺序. 1)全局对象.外部 ...

  5. MySQL数据库----存储过程

    存储过程 存储过程包含了一系列可执行的sql语句,存储过程存放于MySQL中,通过调用它的名字可以执行其内部的一堆sql -- 存储过程的优点: -- 1.程序与数据实现解耦 -- 2.减少网络传输的 ...

  6. ELK+Kafka学习笔记之FileBeat日志合并配置输出到kafka集群

    filebeat.prospectors: - type: log               #日志输出类型   enabled: true                             ...

  7. 20145122《JAVA开发环境的熟悉》实验报告

    package fib; public class fibonaci { public static void main(String[] args) { Fibonaci(20); } public ...

  8. SYSBIOS学习笔记---线程(Threads)

    在SYS/BIOS中,广义上指被处理器执行的任何独立的指令流.线程是一个能够调用一个函数或者中断服务程序的单点控制.在sysbios系统中一共有硬件中断(HWI).软件中断(SWI).任务(Task) ...

  9. bzoj 2654 tree - 二分法 - 最小生成树

    给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色边数. 接下来E行,每行 ...

  10. DSDS,双模,双卡,双待,单待,双通,单通,概念及相互关系?【转】

    本文转载自:https://blog.csdn.net/dirk_it/article/details/7178058?utm_source=blogxgwz9 DSDS:双卡双待 DualSimDu ...