Perfect Groups CodeForces - 980D
题目大意:
定义一个问题: 求集合$S$的最小划分数,使得每个划分内任意两个元素积均为完全平方数.
给定$n$元素序列$a$, 对$a$的所有子区间, 求出上述问题的结果, 最后要求输出所有结果的出现次数
可以先考虑每个划分中的数需要满足什么条件.
假设均为正数, 则只需要所有数除去平方因子后相等即可, 负数的话, 跟正数一样, 正负分开处理即可, 再特判掉$0$.
再考虑如何求解, 因为$n$范围比较小可以支持$n^2$算法的, 直接考虑暴力求出每个子区间的结果, 最后再统计答案.
这样的话需要考虑如何$O(1)$进行转移子区间之间的结果.
考虑添加一个数$x$的情况, 如果之前已经有$x$直接并入其划分, 否则要新增一个划分
所以维护每个数最后出现位置即可.
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <set>
#include <map>
#define REP(i,a,n) for(int i=a;i<=n;++i)
using namespace std; const int N = 5e3+10;
int n, a[N], ans[N];
map<int, int> pos[2];
int cnt[N][N], z; int calc(int x) {
int r = 1;
for (int i=2; i*i<=x; ++i) if (x%i==0) {
int f = 0;
while (x%i==0) f^=1, x/=i;
if (f) r *= i;
}
if (x>1) r *= x;
return r;
} int main() {
scanf("%d", &n);
REP(i,1,n) {
int t, flag = 0;
scanf("%d", &t);
if (t<0) t=-t, flag=1;
int num = calc(t);
if (!t) REP(j,1,i-1) cnt[j][i]=cnt[j][i-1];
else if (pos[flag].count(num)) {
int x = pos[flag][num];
REP(j,1,x) cnt[j][i]=cnt[j][i-1];
REP(j,x+1,i-1) cnt[j][i]=cnt[j][i-1]+1;
} else REP(j,1,i-1) cnt[j][i]=cnt[j][i-1]+1;
if (z) REP(j,z,i-1) cnt[j][i]=1;
cnt[i][i] = 1;
if (t) pos[flag][num] = i, z = 0;
else if (!z) z = i;
}
REP(i,1,n) REP(j,i,n) ++ans[cnt[i][j]];
REP(i,1,n) printf("%d ", ans[i]);
puts("");
}
Perfect Groups CodeForces - 980D的更多相关文章
- Codeforces 980D Perfect Groups 计数
原文链接https://www.cnblogs.com/zhouzhendong/p/9074164.html 题目传送门 - Codeforces 980D 题意 $\rm Codeforces$ ...
- Codeforces 980 D. Perfect Groups
\(>Codeforces\space980 D. Perfect Groups<\) 题目大意 : 设 \(F(S)\) 表示在集合\(S\)中把元素划分成若干组,使得每组内元素两两相乘 ...
- CF 980D Perfect Groups(数论)
CF 980D Perfect Groups(数论) 一个数组a的子序列划分仅当这样是合法的:每个划分中的任意两个数乘积是完全平方数.定义a的权值为a的最小子序列划分个数.现在给出一个数组b,问权值为 ...
- codeforces 980D Perfect Groups
题意: 有这样一个问题,给出一个数组,把里面的数字分组,使得每一个组里面的数两两相乘都是完全平方数. 问最少可以分成的组数k是多少. 现在一个人有一个数组,他想知道这个数组的连续子数组中,使得上面的问 ...
- Codeforces980 D. Perfect Groups
传送门:>Here< 题目大意:先抛出了一个问题——“已知一个序列,将此序列中的元素划分成几组(不需要连续)使得每一组中的任意两个数的乘积都是完全平方数.特殊的,一个数可以为一组.先要求最 ...
- cf980d Perfect Groups
题意 定义一个串的权值是将其划分成 \(k\) 组,使得每一组在满足"从组里选出一个数,再从组里选出一个数,它们的乘积没有平方因子"这样的前提时的最小的 \(k\).每组的数不必相 ...
- Codeforces 980D
这题其实挺水的,但我比较vegetable,交了好多次才过. 题意: 给定一个序列,把这个序列的所有连续子序列分组,每组中任意两个数相乘是个完全平方数,输出每个子序列最少分的组数: 思路: 先把每个数 ...
- cf round480D Perfect Groups
题意:给一个序列,对于每一个连续的区间,区间内的数至少分成几个组,使得每个组内的数任意2个相乘是一个完全平方数(包括0). 输出每个组数的个数. $n \leq 5000 , |a_i| \leq 1 ...
- [codeforces 317]A. Perfect Pair
[codeforces 317]A. Perfect Pair 试题描述 Let us call a pair of integer numbers m-perfect, if at least on ...
随机推荐
- python 用正则表达式把”0102030405”分成5组('0', '1'), ('0', '2'), ('0', '3'), ('0', '4'), ('0', '5')
把”0102030405”分成5组('0', '1'), ('0', '2'), ('0', '3'), ('0', '4'), ('0', '5') re.findall(r"(\d)(\ ...
- web前端----JavaScript的DOM(一)
一.什么是HTML DOM HTML Document Object Model(文档对象模型) HTML DOM 定义了访问和操作HTML文档的标准方法 HTML DOM 把 HTML 文档呈现 ...
- linux环境下安装tomcat6
1)下载apache-tomcat-6.0.10.tar.gz 2)#tar -zxvf apache-tomcat-6.0.10.tar.gz ://解压 3)#cp -R apache-tomca ...
- Tomcat8.5 升级tomcat版本导致出现异常,Base64不存在
Tomcat8.5 升级tomcat版本导致出现异常,Base64不存在 原因分析: 由于tomcat由7升级到8.5导致Base64的引用路径错误,默认引用为8.5中的jar, 解决方案: 修改引用 ...
- Java实现心跳机制
一.心跳机制简介 在分布式系统中,分布在不同主机上的节点需要检测其他节点的状态,如服务器节点需要检测从节点是否失效.为了检测对方节点的有效性,每隔固定时间就发送一个固定信息给对方,对方回复一个固定信息 ...
- MNIST机器学习入门【学习笔记】
平台信息:PC:ubuntu18.04.i5.anaconda2.cuda9.0.cudnn7.0.5.tensorflow1.10.GTX1060 作者:庄泽彬(欢迎转载,请注明作者) 说明:本文是 ...
- openwrt的编译系统是如何生成squashfs文件系统的
答:请看include/image.mk中的以下定义: define Image/mkfs/squashfs $(STAGING_DIR_HOST)/bin/mksquashfs4 $(call mk ...
- Zookeeper 概念
Zookeeper: Zookeeper是一个高可用的分布式管理与协调框架,基于ZAB算法(原子消息广播协议)的实现.该框架能够很好的保证分布式环境中数据的一致性.也只是基于这样的特性,使得Zooke ...
- 马尔科夫随机场模型(MRF-Markov Random Field)
原文: http://blog.sina.com.cn/s/blog_92c398b00102vs3q.html 马尔科夫过程 隐马尔科夫过程 与马尔科夫相比,隐马尔可夫模型则是双重随机过程,不 ...
- FAST:通过Floodlight控制器下发流表
参考: Floodlight+Mininet搭建OpenFlow(四):流表操作 通过Floodlight控制器下发流表 下发流表的方式有两种: 1.借助Floodlight的北向API,利用curl ...