hdu 1014 Uniform Generator 数论
摘取于http://blog.csdn.net/kenden23/article/details/37519883;
找到规律之后本题就是水题了,不过找规律也不太容易的,证明这个规律成立更加不容易。
本题就是求step和mod如果GCD(最大公约数位1)那么就是Good Choice,否则为Bad Choice
为什么这个结论成立呢?
因为当GCD(step, mod) == 1的时候,那么第一次得到序列:x0, x0 + step, x0 + step…… 那么mod之后,必然下一次重复出现比x0大的数必然是x0+1,为什么呢?
因为(x0 + n*step) % mod; 且不需要考虑x0 % mod的值为多少,因为我们想知道第一次比x0大的数是多少,那么就看n*step%mod会是多少了,因为GCD(step, mod) == 1,那么n*step%mod必然是等于1,故此第一次重复出现比x0大的数必然是x0+1,那么第二次出现比x0大的数必然是x0+2,以此类推,就可得到必然会出现所有0到mod-1的数,然后才会重复出现x0.
当GCD(step, mod) != 1的时候,可以推出肯定跨过某些数了,这里不推了。
然后可以扩展这个结论,比如如果使用函数 x(n) = (x(n-1) * a + b)%mod;增加了乘法因子a,和步长b了;
那么如果是Good Choice,就必然需要GCD(a, mod) == 1,而且GCD(b, mod) == 1;
(另外的证明)
对于mod n域中的任意数a,若有gcd(m,n)=1,则m为该域的生成元,使得a+km可以为域中任意数.
证明十分简单,若gcd(m,n)=1,则lcm(m,n)=m*n,则对于a的mod n运算,需要n次的计算才能回到a,期间必遍历该域中所有数!
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define mod 1000000007
int scan()
{
int res = 0 , ch ;
while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) )
{
if( ch == EOF ) return 1 << 30 ;
}
res = ch - '0' ;
while( ( ch = getchar() ) >= '0' && ch <= '9' )
res = res * 10 + ( ch - '0' ) ;
return res ;
}
int gcd(int x,int y)
{
return x%y?gcd(y,x%y):y;
}
int main()
{
int x,y,z,i,t;
while(~scanf("%d%d",&x,&y))
{
printf("%10d%10d",x,y);
if(gcd(x,y)==1)
printf(" Good Choice\n");//4个空格,pe多次
else
printf(" Bad Choice\n");
printf("\n");
}
return 0;
}
hdu 1014 Uniform Generator 数论的更多相关文章
- HDU 1014 Uniform Generator(模拟和公式)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1014 Uniform Generator Time Limit: 2000/1000 MS (Java ...
- HDU 1014 Uniform Generator【GCD,水】
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1014:Uniform Generator
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1014 Uniform Generator(题解)
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1014.Uniform Generator 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 题目意思:给出 STEP 和 MOD,然后根据这个公式:seed(x+1) = [seed(x) ...
- HDU 1014 Uniform Generator 欧几里得
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 解题思路: 1. 把题目意思读懂后,明白会输入两个数,然后根据题中的公式产生一系列伪随机数,看这 ...
- HDU 1014 Uniform Generator 题解
找到规律之后本题就是水题了.只是找规律也不太easy的.证明这个规律成立更加不easy. 本题就是求step和mod假设GCD(最大公约数位1)那么就是Good Choice,否则为Bad Choic ...
- HDU 1014 Uniform Generator(最大公约数,周期循环)
#include<iostream> #include <cstdio> #include <cstring> using namespace std; int m ...
- 1014 Uniform Generator ACM
http://acm.hdu.edu.cn/showproblem.php?pid=1014 题目的英文实在是太多了 ,搞不懂. 最后才知道是用公式seed(x+1) = [seed(x) + STE ...
随机推荐
- elasticsearch 6.0java api的使用
elasticsearch 6.0 中java api的使用 1:使用java api创建elasticsearch客户端 package com.search.elasticsearch; impo ...
- 浅谈Android View事件分发机制
引言 前面的文章介绍了View的基础知识和View的滑动,今天我们来介绍View的另一个核心知识,View的事件分发机制. 点击事件的传递规则 所谓的点击事件的分发机制,其实就是对MotionEven ...
- 1:4 UI标签和通用标签
UI标签:负责用户界面输出的标签. 非标单:例如错误信息提示的标签 fielderror,actionerror,actionmessagr:系统错误消息的自动显示 通 ...
- SV中的OOP
OOP:Object-Oriented Programming,有两点个人认为适合验证环境的搭建:1)Property(变量)和Method(function/task)的封装,其实是BFM模型更方便 ...
- Hive表中Partition的创建
作用: 在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作.有时候只需要扫描表中关心的一部分数据,在对应的partition里面去查找就可以,减少查询时间. 1. 创建表 ...
- maven intall在target文件夹中自动生成的war包部署服务器时缺斤少两
1.问题描述,本地改动特别大或者升级系统操作,打war包部署服务器上程序时候,页面或者后台总是报错,原因就是比本地少东西. 2.问题排查解决:maven clean然后maven intall在tar ...
- python webdriver 测试框架-行为驱动例子
安装行为驱动模块lettuce(卷心菜)模块 pip install lettuce Successfully installed argparse-1.4.0 colorama-0.3.9 extr ...
- 关于hibernate中的session与数据库连接关系以及getCurrentSession 与 openSession() 的区别
1.session与connection,是多对一关系,每个session都有一个与之对应的connection,一个connection不同时刻可以供多个session使用. 2.多个sessi ...
- web前端----JavaScript对象
简介: 在JavaScript中除了null和undefined以外其他的数据类型都被定义成了对象,也可以用创建对象的方法定义变量,String.Math.Array.Date.RegExp都是Jav ...
- 远程登录 dos命令
1.桌面连接命令 mstsc /v: 192.168.1.250 /console 2.若需要远程启动所有Internet服务,可以使用iisreset命令来实现. 进入“命令提示符”窗口.在提示符后 ...