keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715
人脸识别热门,表情识别更加。但是表情识别很难,因为人脸的微表情很多,本节介绍一种比较粗线条的表情分类与识别的办法。
Keras系列:
1、keras系列︱Sequential与Model模型、keras基本结构功能(一)
2、keras系列︱Application中五款已训练模型、VGG16框架(Sequential式、Model式)解读(二)
3、keras系列︱图像多分类训练与利用bottleneck features进行微调(三)
4、keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)
5、keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完整案例(五)
本次讲述的表情分类是识别的分析流程分为:
- 1、加载pre-model网络与权重;
- 2、利用opencv的函数进行简单的人脸检测;
- 3、抠出人脸的图并灰化;
- 4、表情分类器检测
.
一、表情数据集
主要来源于kaggle比赛,下载地址。
有七种表情类别: (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).
数据是48x48 灰度图,格式比较奇葩。
第一列是情绪分类,第二列是图像的numpy,第三列是train or test。
.
二、opencv的人脸识别
参考《opencv+Recorder︱OpenCV 中使用 Haar 分类器进行面部检测》
理论略过,直接来看重点:
(1)加载人脸检测器,haarcascade_frontalface_default.xml;
(2)图片加载并灰化,cvtColor,可参考: opencv︱图像的色彩空間cvtColor(HSV、HSL、HSB 、BGR)
(2)人脸探测,detectMultiScale.
# (1)加载人脸检测器
cascPath = '/.../haarcascade_frontalface_default.xml'
faceCascade = cv2.CascadeClassifier(cascPath)
# (2)图片加载并灰化
jpg_file = '/home/ubuntu/keras/image/8c80abb4gw1f3b5hxd3aaj20jg0cx411.jpg'
img_gray = cv2.imread(jpg_file)
img_gray = cv2.cvtColor(img_gray, cv2.COLOR_BGR2GRAY)
# 人脸探测
faces = faceCascade.detectMultiScale(
img_gray,
scaleFactor=1.1,
minNeighbors=1,# minNeighbors=5比较难检测
minSize=(30, 30),
flags=cv2.cv.CV_HAAR_SCALE_IMAGE
)
其中minNeighbors设置小一些,容易检测出来。这个检测器还是有点粗糙。
.
三、表情分类与识别
本节源自github的mememoji。
网络结构:

opencv中的人脸检测的pre-model文件(haarcascade_frontalface_default.xml)和表情识别pre-model文件(model.h5)都在作者的github下载。
是利用Keras实现的。直接来看完整的代码:
import cv2
import sys
import json
import time
import numpy as np
from keras.models import model_from_json
emotion_labels = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral']
# load json and create model arch
json_file = open('/.../model.json','r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
# load weights into new model
model.load_weights('/.../model.h5')
def predict_emotion(face_image_gray): # a single cropped face
resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)
# cv2.imwrite(str(index)+'.png', resized_img)
image = resized_img.reshape(1, 1, 48, 48)
list_of_list = model.predict(image, batch_size=1, verbose=1)
angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]
return [angry, fear, happy, sad, surprise, neutral]
# -------------------直接预测-----------------------
img_gray = cv2.imread('/.../real-time_emotion_analyzer-master/meme_faces/angry-angry.png')
img_gray = cv2.cvtColor(img_gray, cv2.COLOR_BGR2GRAY)
angry, fear, happy, sad, surprise, neutral = predict_emotion(img_gray)
# -------------------人脸预测-----------------------
# 加载检测器
cascPath = '/.../real-time_emotion_analyzer-master/haarcascade_frontalface_default.xml'
faceCascade = cv2.CascadeClassifier(cascPath)
# 图像灰化
jpg_file = '/.../001.jpg'
img_gray = cv2.imread(jpg_file)
img_gray = cv2.cvtColor(img_gray, cv2.COLOR_BGR2GRAY)
# 人脸检测
faces = faceCascade.detectMultiScale(
img_gray,
scaleFactor=1.1,
minNeighbors=1,# minNeighbors=5比较难检测
minSize=(30, 30),
flags=cv2.cv.CV_HAAR_SCALE_IMAGE
)
# 表情画框
for (x, y, w, h) in faces:
face_image_gray = img_gray[y:y+h, x:x+w]
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)
keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)的更多相关文章
- keras系列︱图像多分类训练与利用bottleneck features进行微调(三)
引自:http://blog.csdn.net/sinat_26917383/article/details/72861152 中文文档:http://keras-cn.readthedocs.io/ ...
- OpenCV人脸识别LBPH算法源码分析
1 背景及理论基础 人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻 ...
- opencv人脸识别代码
opencv人脸识别C++代码 /* * Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>. * Relea ...
- OpenCV学习系列(一) Mac下OpenCV + xcode人脸检测实现
# OpenCV学习系列(一) Mac下OpenCV + xcode人脸检测实现 [-= 博客目录 =-] 1-学习目标 1.1-本章介绍 1.2-实践内容 1.3-相关说明 2-学习过程 2.1-环 ...
- OpenCV人脸识别的原理 .
OpenCV人脸识别的原理 . 在之前讲到的人脸测试后,提取出人脸来,并且保存下来,以供训练或识别是用,提取人脸的代码如下: void GetImageRect(IplImage* orgImage, ...
- opencv 人脸识别
背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从 ...
- opencv 人脸识别 (二)训练和识别
上一篇中我们对训练数据做了一些预处理,检测出人脸并保存在\pic\color\x文件夹下(x=1,2,3,...类别号),本文做训练和识别.为了识别,首先将人脸训练数据 转为灰度.对齐.归一化,再放入 ...
- opencv 人脸识别 (一)训练样本的处理
本文实现基于eigenface的人脸检测与识别.给定一个图像数据库,进行以下步骤: 进行人脸检测,将检测出的人脸存入数据库2 对数据库2进行人脸建模 在测试集上进行recognition 本篇实现 ...
- 转:基于开源项目OpenCV的人脸识别Demo版整理(不仅可以识别人脸,还可以识别眼睛鼻子嘴等)【模式识别中的翘楚】
文章来自于:http://blog.renren.com/share/246648717/8171467499 基于开源项目OpenCV的人脸识别Demo版整理(不仅可以识别人脸,还可以识别眼睛鼻子嘴 ...
随机推荐
- SharePoint 2013 Backup Farm Automatically With a Powershell and Windows Task Schedule
In this post,I will show you SharePoint 2013 How to Backup Farm Automatically with a PowerShell and ...
- SQLServer2012 (非)聚集索引存储探究
SQLServer2012 (非)聚集索引存储探究 Author:zfive5(zidong) Email:zfive5@163.com 引子 因为写了前一篇文字<SQLServer2012 表 ...
- 一个简单的增强型PHP curl函数
啥都不说,先上代码 <?PHP /* * @author 小伍 */ echo "<pre>"; $proxy = array('url'=>'http:/ ...
- python md5 问题(TypeError: Unicode-objects must be encoded before hashing)
import hashlib import sys def md5s(): m=hashlib.md5() strs=sys.argv[1] m.update(strs.encode("ut ...
- [转]OkHttp3 最有营养的初级教程
一.前言 自从Android4.4开始,google已经开始将源码中的HttpURLConnection替换为OkHttp,而在Android6.0之后的SDK中google更是移除了对于HttpCl ...
- 转:zTree树控件扩展篇:巧用zTree控件实现文本框输入关键词自动模糊查找zTree树节点实现模糊匹配下拉选择效果
是否可以借助于zTree实现文本框输入关键词自动模糊匹配zTree下拉树,然后选择下拉树内节点显示在文本框内且隐藏下拉树. 看到这个需求脑子里头大致已经想到了要如何实现这样一个需求,当时是限于时间问题 ...
- 如何将 .net2.0注册到IIS ,重新注册IIS
打开程序-运行-cmd:输入一下命令重新注册IIS C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\aspnet_regiis.exe -i 一.运行C:\ ...
- Spring Hibernate JPA 联表查询 复杂查询(转)
今天刷网,才发现: 1)如果想用hibernate注解,是不是一定会用到jpa的? 是.如果hibernate认为jpa的注解够用,就直接用.否则会弄一个自己的出来作为补充. 2)jpa和hibern ...
- spring 项目中使用 hibernate validator验证输入参数
1 hibernate validator 官方文档:https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_si ...
- Matlab之视角旋转函数[转]
Matlab中有两个视角旋转函数:view和rotate,下面详细介绍: view: 一: view(az,el):az是方位角,el是仰角,单位均是度.具体: 以x轴从左到右(即从小到大)平行放置在 ...