引自:http://blog.csdn.net/sinat_26917383/article/details/72885715

人脸识别热门,表情识别更加。但是表情识别很难,因为人脸的微表情很多,本节介绍一种比较粗线条的表情分类与识别的办法。

Keras系列:

1、keras系列︱Sequential与Model模型、keras基本结构功能(一) 
2、keras系列︱Application中五款已训练模型、VGG16框架(Sequential式、Model式)解读(二) 
3、keras系列︱图像多分类训练与利用bottleneck features进行微调(三) 
4、keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四) 
5、keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完整案例(五)


本次讲述的表情分类是识别的分析流程分为:

  • 1、加载pre-model网络与权重;
  • 2、利用opencv的函数进行简单的人脸检测;
  • 3、抠出人脸的图并灰化;
  • 4、表情分类器检测

.


一、表情数据集

主要来源于kaggle比赛,下载地址。 
有七种表情类别: (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral). 
数据是48x48 灰度图,格式比较奇葩。 
第一列是情绪分类,第二列是图像的numpy,第三列是train or test。  

.


二、opencv的人脸识别

参考《opencv+Recorder︱OpenCV 中使用 Haar 分类器进行面部检测》 
理论略过,直接来看重点: 
(1)加载人脸检测器,haarcascade_frontalface_default.xml; 
(2)图片加载并灰化,cvtColor,可参考: opencv︱图像的色彩空間cvtColor(HSV、HSL、HSB 、BGR) 
(2)人脸探测,detectMultiScale.

# (1)加载人脸检测器
cascPath = '/.../haarcascade_frontalface_default.xml'
faceCascade = cv2.CascadeClassifier(cascPath) # (2)图片加载并灰化
jpg_file = '/home/ubuntu/keras/image/8c80abb4gw1f3b5hxd3aaj20jg0cx411.jpg'
img_gray = cv2.imread(jpg_file)
img_gray = cv2.cvtColor(img_gray, cv2.COLOR_BGR2GRAY) # 人脸探测
faces = faceCascade.detectMultiScale(
img_gray,
scaleFactor=1.1,
minNeighbors=1,# minNeighbors=5比较难检测
minSize=(30, 30),
flags=cv2.cv.CV_HAAR_SCALE_IMAGE
)

其中minNeighbors设置小一些,容易检测出来。这个检测器还是有点粗糙。 
.


三、表情分类与识别

本节源自github的mememoji。 
网络结构: 

opencv中的人脸检测的pre-model文件(haarcascade_frontalface_default.xml)和表情识别pre-model文件(model.h5)都在作者的github下载。

是利用Keras实现的。直接来看完整的代码:

import cv2
import sys
import json
import time
import numpy as np
from keras.models import model_from_json emotion_labels = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral'] # load json and create model arch
json_file = open('/.../model.json','r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json) # load weights into new model
model.load_weights('/.../model.h5') def predict_emotion(face_image_gray): # a single cropped face
resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)
# cv2.imwrite(str(index)+'.png', resized_img)
image = resized_img.reshape(1, 1, 48, 48)
list_of_list = model.predict(image, batch_size=1, verbose=1)
angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]
return [angry, fear, happy, sad, surprise, neutral] # -------------------直接预测-----------------------
img_gray = cv2.imread('/.../real-time_emotion_analyzer-master/meme_faces/angry-angry.png')
img_gray = cv2.cvtColor(img_gray, cv2.COLOR_BGR2GRAY)
angry, fear, happy, sad, surprise, neutral = predict_emotion(img_gray) # -------------------人脸预测-----------------------
# 加载检测器
cascPath = '/.../real-time_emotion_analyzer-master/haarcascade_frontalface_default.xml'
faceCascade = cv2.CascadeClassifier(cascPath) # 图像灰化
jpg_file = '/.../001.jpg'
img_gray = cv2.imread(jpg_file)
img_gray = cv2.cvtColor(img_gray, cv2.COLOR_BGR2GRAY) # 人脸检测
faces = faceCascade.detectMultiScale(
img_gray,
scaleFactor=1.1,
minNeighbors=1,# minNeighbors=5比较难检测
minSize=(30, 30),
flags=cv2.cv.CV_HAAR_SCALE_IMAGE
) # 表情画框
for (x, y, w, h) in faces:
face_image_gray = img_gray[y:y+h, x:x+w]
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)

keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)的更多相关文章

  1. keras系列︱图像多分类训练与利用bottleneck features进行微调(三)

    引自:http://blog.csdn.net/sinat_26917383/article/details/72861152 中文文档:http://keras-cn.readthedocs.io/ ...

  2. OpenCV人脸识别LBPH算法源码分析

    1 背景及理论基础 人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻 ...

  3. opencv人脸识别代码

    opencv人脸识别C++代码 /* * Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>. * Relea ...

  4. OpenCV学习系列(一) Mac下OpenCV + xcode人脸检测实现

    # OpenCV学习系列(一) Mac下OpenCV + xcode人脸检测实现 [-= 博客目录 =-] 1-学习目标 1.1-本章介绍 1.2-实践内容 1.3-相关说明 2-学习过程 2.1-环 ...

  5. OpenCV人脸识别的原理 .

    OpenCV人脸识别的原理 . 在之前讲到的人脸测试后,提取出人脸来,并且保存下来,以供训练或识别是用,提取人脸的代码如下: void GetImageRect(IplImage* orgImage, ...

  6. opencv 人脸识别

      背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从 ...

  7. opencv 人脸识别 (二)训练和识别

    上一篇中我们对训练数据做了一些预处理,检测出人脸并保存在\pic\color\x文件夹下(x=1,2,3,...类别号),本文做训练和识别.为了识别,首先将人脸训练数据 转为灰度.对齐.归一化,再放入 ...

  8. opencv 人脸识别 (一)训练样本的处理

    本文实现基于eigenface的人脸检测与识别.给定一个图像数据库,进行以下步骤: 进行人脸检测,将检测出的人脸存入数据库2 对数据库2进行人脸建模 在测试集上进行recognition   本篇实现 ...

  9. 转:基于开源项目OpenCV的人脸识别Demo版整理(不仅可以识别人脸,还可以识别眼睛鼻子嘴等)【模式识别中的翘楚】

    文章来自于:http://blog.renren.com/share/246648717/8171467499 基于开源项目OpenCV的人脸识别Demo版整理(不仅可以识别人脸,还可以识别眼睛鼻子嘴 ...

随机推荐

  1. SharePoint 2013 Farm 安装指南——构建一个双层SharePoint Farm

    最近要对公司里的SharePoint进行升级,由于旧的系统SharePoint 2010已经有2年了,上面改动比较多,而且权限也很混乱了,所以下定决心要对其做一次升级,重新部署一台新的SharePoi ...

  2. FreeSWITCH快速录音

    一.背景 测试人员反映FreeSWITCH录音不及时,需要大约5秒的时间才能捕获到RTP流. 二.原因及解决 查了下资料,FreeSWITCH默认的录音参数配置是开启缓冲的, 即RTP流大小到达655 ...

  3. Vivado抓取信号

    作者:桂. 时间:2018-05-03  21:16:03 链接:www.cnblogs.com/xingshansi/p/8987608.html 前言 FPGA调试需要抓取特定信号,一个直观的思路 ...

  4. RocketMQ最佳实践(一)4.0版本/概念介绍/安装调试/客户端demo

    为什么选择RocketMQ 我们来看看官方回答: “我们研究发现,对于ActiveMQ而言,随着越来越多的使用queues和topics,其IO成为了瓶颈.某些情况下,消费者缓慢(消费能力不足)还会拖 ...

  5. IOS开发之UIScrollVIew运用

    UIScrollView可以实现在一个界面看到所有内容,同时也不需要担心所显示的内容超出屏幕的大小,当超出之后可以翻阅至下一页浏览. #pragma mark - UIScrollViewDelega ...

  6. [svc]linux性能监控

    参考 w - Show who is logged on and what they are doing. [root@n1 ~]# w # w - Show who is logged on and ...

  7. Golang 新手可能会踩的 50 个坑

    前言 Go 是一门简单有趣的编程语言,与其他语言一样,在使用时不免会遇到很多坑,不过它们大多不是 Go 本身的设计缺陷.如果你刚从其他语言转到 Go,那这篇文章里的坑多半会踩到. 如果花时间学习官方 ...

  8. GitBash:修改GitBash主题配色和字体

    打开GitBash,使用命令: cd ~ 然后: vi .minttyrc 使用下列内容替换已有内容: Font=Consolas FontHeight= ForegroundColour=,, Ba ...

  9. 《java虚拟机》汇总所有关键要点

    一  .java虚拟机底层结构详解 我们知道,一个JVM实例的行为不光是它自己的事,还涉及到它的子系统.存储区域.数据类型和指令这些部分,它们描述了JVM的一个抽象的内部体系结构,其目的不光规定实现J ...

  10. c++11新增的一些便利的算法

    c++11新增加了一些便利的算法,这些新增的算法使我们的代码写起来更简洁方便,这里仅仅列举一些常用的新增算法,算是做个总结,更多的新增算法读者可以参考http://en.cppreference.co ...