【题目】F. Strongly Connected Tournament

【题意】给定n个点(游戏者),每轮游戏进行下列操作:

1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之j赢i),连边从赢者向输者,从而得到一个有向完全图。

2.对于其中点数>1的强连通分量再次进行过程1,直至不存在点数>1的强连通分量为止。

给定n和p,求游戏总场次的期望。2<=n<=2000。

【算法】数学概率,期望DP

【题解】答案只和点数有关,设ans(n)表示n个点游戏总场次的期望,ans(0)=ans(1)=0。对于有向完全图,一定有且仅有一个出度为0的强连通分量,据此转移。(入度为0也行)

$$ans(n)=\sum_{i=1}^{n}s(i)*cp(n,i)*[ans(i)+ans(n-i)+i*(n-i)+\frac{i*(i-1)}{2}]$$

第一部分:首先选择i个点形成强连通分离,设s(i)表示i个点形成强连通分量的概率。

第二部分:然后这i个点必须是出度为0的强连通分量(拓扑序最后一个),换句话说必须被所有其它n-i个点打败。设cp(n,i)表示n个点中选i个点满足被其它n-i个点打败的概率。

第三部分:假设确定了最后一个强连通分量是i个点,那么这i个点进行了一轮游戏i*(i-1)/2,然后这i个点进入下一轮ans(i),其它n-i个点视为正常继续游戏ans(n-i),本轮游戏相互之间还有n*(n-i)场。

移项解方程。(cp(n,n)=1)

接下来计算cp(n,i)表示n个点中选i个点满足被其它n-i个点打败的概率,显然cp(n,0)=1。打败的概率和编号密切相关,所以通过依赖于点n的归属来计算:

$$cp(n,i)=p^{n-i}*cp(n-1,i)+(1-p)^i*cp(n-1,i-1)$$

第n个点要么是集合中的点,要么是集合外的点。

接下来计算s(n)表示n个点形成强连通分量的概率,显然s(1)=1。直接考虑形成强连通分量相当困难,换一种方式,按主方程一样考虑拓扑序最后一个强连通分量(如果大小不是n说明不是强连通分量)。

$$s(n)=1-\sum_{i=1}^{n-1}s(i)*cp(n,i)$$

复杂度O(n^2)。

#include<cstdio>
#include<algorithm>
using namespace std;
const int MOD=,maxn=;
int n,a,b,p,q,pp[maxn],qq[maxn],cp[maxn][maxn],strong[maxn],ans[maxn];
int M(int x){return x>=MOD?x-MOD:x;}
int power(int x,int k){
int ans=;
while(k){
if(k&)ans=1ll*ans*x%MOD;
x=1ll*x*x%MOD;
k>>=;
}
return ans;
}
int main(){
scanf("%d%d%d",&n,&a,&b);
p=1ll*a*power(b,MOD-)%MOD;
q=M(-p+MOD);
pp[]=qq[]=;
for(int i=;i<=n;i++)pp[i]=1ll*pp[i-]*p%MOD,qq[i]=1ll*qq[i-]*q%MOD;
cp[][]=;
for(int s=;s<=n;s++){
cp[s][]=;
for(int i=;i<=s;i++)cp[s][i]=M(1ll*cp[s-][i]*qq[i]%MOD+1ll*cp[s-][i-]*pp[s-i]%MOD);
}
strong[]=;
for(int s=;s<=n;s++){
for(int i=;i<s;i++)strong[s]=M(strong[s]+1ll*strong[i]*cp[s][i]%MOD);
strong[s]=M(-strong[s]+MOD);
}
ans[]=ans[]=;
for(int s=;s<=n;s++){
ans[s]=;
for(int i=;i<s;i++){
a=1ll*strong[i]*cp[s][i]%MOD;
b=(i*(s-i)+i*(i-)/+ans[i]+ans[s-i])%MOD;
ans[s]=M(ans[s]+1ll*a*b%MOD);
}
ans[s]=1ll*M(ans[s]+1ll*strong[s]*s*(s-)/%MOD)*power(M(-strong[s]+MOD),MOD-)%MOD;
}
printf("%d",ans[n]);
return ;
}

【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP的更多相关文章

  1. 【CF913F】Strongly Connected Tournament 概率神题

    [CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...

  2. 【算法学习笔记】概率与期望DP

    本文学习自 Sengxian 学长的博客 之前也在CF上写了一些概率DP的题并做过总结 建议阅读完本文再去接着阅读这篇文章:Here 前言 单纯只用到概率的题并不是很多,从现有的 OI/ACM 比赛中 ...

  3. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  4. 概率和期望dp

    概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333   概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题: ...

  5. 概率与期望dp相关

    概率与期望dp 概率 某个事件A发生的可能性的大小,称之为事件A的概率,记作P(A). 假设某事的所有可能结果有n种,每种结果都是等概率,事件A涵盖其中的m种,那么P(A)=m/n. 例如投掷一枚骰子 ...

  6. @codeforces - 913F@ Strongly Connected Tournament

    目录 @description@ @solution@ @accepted code@ @details@ @description@ n 个选手参加了一场竞赛,这场竞赛的规则如下: 1.一开始,所有 ...

  7. 概率及期望DP小结

    资源分享 26 个比较概率大小的问题 数论小白都能看懂的数学期望讲解 概念 \(PS\):不需要知道太多概念,能拿来用就行了. 定义 样本(\(\omega\)):一次随机试验产生的一个结果. 样本空 ...

  8. 【BZOJ-3450】Tyvj1952Easy 概率与期望DP

    3450: Tyvj1952 Easy Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 468  Solved: 353[Submit][Status] ...

  9. BZOJ 3566 [SHOI2014]概率充电器 ——期望DP

    期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...

随机推荐

  1. RequestMappingHandlerMapping 详解

    我们先理简单梳理一个关系 关系梳理 spring ioc 是spring的核心,用来管理spring bean的生命周期 MVC 是一种使用 MVC(Model View Controller 模型- ...

  2. CA如何吊销签署过的证书

    1: 客户端获取要吊销证书的serial(在使用证书上的主机执行) openssl x509 -in httpd.crt -noout -serial -subject   2:拿到证书的编号后,通过 ...

  3. 通过js读取元素的样式

    /* * 通过元素.style.样式只能获取到内联样式的值,就是style写在元素里面的值,不能获取嵌入式和外联样式的值 * 所以如果要获取除内联样式后的值,就不能通过这个获取 * alert(box ...

  4. Hash(散列函数)简单应用引出解决散列冲突的四种方法

    商店允许顾客通过电话订购商品,并在几天后上门自取.商店的数据库使用客户的电话号码作为其检索的关键字(客户知道自己的电话号码,而且这些电话关键字几乎是唯一的).如何组织商店的数据库,以允许更加高效的进行 ...

  5. 解决svn "cannot set LC_CTYPE locale"的问题

    解决svn "cannot set LC_CTYPE locale"的问题 在ubuntu 8.10下安装的svn,在将Ubuntu的语言修改为英文之后,出现错误警告: $ svn ...

  6. BZOJ 1266 上学路线(最短路+最小割)

    给出n个点的无向图,每条边有两个属性,边权和代价. 第一问求1-n的最短路.第二问求用最小的代价删边使得最短路的距离变大. 对于第二问.显然该删除的是出现在最短路径上的边.如果我们将图用最短路跑一遍预 ...

  7. 【bzoj4709】[Jsoi2011]柠檬 斜率优化

    题目描述 给你一个长度为 $n$ 的序列,将其分成若干段,每段选择一个数,获得 $这个数\times 它在这段出现次数的平方$ 的价值.求最大总价值. $n\le 10^5$ . 输入 第 1 行:一 ...

  8. 【数据库_Postgresql】sql查询结果添加序号列

    ROW_NUMBER () OVER (ORDER BY A .ordernumber ASC) AS 序号

  9. 【题解】AC自动机题解合集

    最近貌似大家都在搞字符串?很长一段时间都没有写博客了……还是补一补坑吧. 感觉AC自动机真的非常优美了,通过在trie树上建立fail指针可以轻松解决多模匹配的问题.实际上在AC自动机上的匹配可以看做 ...

  10. RHEL 7中有关终端的快捷方式

    快速启动终端 网上有不错的教程,只是有时候和版本有一定的出入,这里涉及小白博主自行摸索的过程(RHEL 7.4). 1.点击桌面右上角,选择设置(小扳手) 2.选择键盘(Keyboard) 3.将进度 ...