【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP
【题目】F. Strongly Connected Tournament
【题意】给定n个点(游戏者),每轮游戏进行下列操作:
1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之j赢i),连边从赢者向输者,从而得到一个有向完全图。
2.对于其中点数>1的强连通分量再次进行过程1,直至不存在点数>1的强连通分量为止。
给定n和p,求游戏总场次的期望。2<=n<=2000。
【算法】数学概率,期望DP
【题解】答案只和点数有关,设ans(n)表示n个点游戏总场次的期望,ans(0)=ans(1)=0。对于有向完全图,一定有且仅有一个出度为0的强连通分量,据此转移。(入度为0也行)
$$ans(n)=\sum_{i=1}^{n}s(i)*cp(n,i)*[ans(i)+ans(n-i)+i*(n-i)+\frac{i*(i-1)}{2}]$$
第一部分:首先选择i个点形成强连通分离,设s(i)表示i个点形成强连通分量的概率。
第二部分:然后这i个点必须是出度为0的强连通分量(拓扑序最后一个),换句话说必须被所有其它n-i个点打败。设cp(n,i)表示n个点中选i个点满足被其它n-i个点打败的概率。
第三部分:假设确定了最后一个强连通分量是i个点,那么这i个点进行了一轮游戏i*(i-1)/2,然后这i个点进入下一轮ans(i),其它n-i个点视为正常继续游戏ans(n-i),本轮游戏相互之间还有n*(n-i)场。
移项解方程。(cp(n,n)=1)
接下来计算cp(n,i)表示n个点中选i个点满足被其它n-i个点打败的概率,显然cp(n,0)=1。打败的概率和编号密切相关,所以通过依赖于点n的归属来计算:
$$cp(n,i)=p^{n-i}*cp(n-1,i)+(1-p)^i*cp(n-1,i-1)$$
第n个点要么是集合中的点,要么是集合外的点。
接下来计算s(n)表示n个点形成强连通分量的概率,显然s(1)=1。直接考虑形成强连通分量相当困难,换一种方式,按主方程一样考虑拓扑序最后一个强连通分量(如果大小不是n说明不是强连通分量)。
$$s(n)=1-\sum_{i=1}^{n-1}s(i)*cp(n,i)$$
复杂度O(n^2)。
#include<cstdio>
#include<algorithm>
using namespace std;
const int MOD=,maxn=;
int n,a,b,p,q,pp[maxn],qq[maxn],cp[maxn][maxn],strong[maxn],ans[maxn];
int M(int x){return x>=MOD?x-MOD:x;}
int power(int x,int k){
int ans=;
while(k){
if(k&)ans=1ll*ans*x%MOD;
x=1ll*x*x%MOD;
k>>=;
}
return ans;
}
int main(){
scanf("%d%d%d",&n,&a,&b);
p=1ll*a*power(b,MOD-)%MOD;
q=M(-p+MOD);
pp[]=qq[]=;
for(int i=;i<=n;i++)pp[i]=1ll*pp[i-]*p%MOD,qq[i]=1ll*qq[i-]*q%MOD;
cp[][]=;
for(int s=;s<=n;s++){
cp[s][]=;
for(int i=;i<=s;i++)cp[s][i]=M(1ll*cp[s-][i]*qq[i]%MOD+1ll*cp[s-][i-]*pp[s-i]%MOD);
}
strong[]=;
for(int s=;s<=n;s++){
for(int i=;i<s;i++)strong[s]=M(strong[s]+1ll*strong[i]*cp[s][i]%MOD);
strong[s]=M(-strong[s]+MOD);
}
ans[]=ans[]=;
for(int s=;s<=n;s++){
ans[s]=;
for(int i=;i<s;i++){
a=1ll*strong[i]*cp[s][i]%MOD;
b=(i*(s-i)+i*(i-)/+ans[i]+ans[s-i])%MOD;
ans[s]=M(ans[s]+1ll*a*b%MOD);
}
ans[s]=1ll*M(ans[s]+1ll*strong[s]*s*(s-)/%MOD)*power(M(-strong[s]+MOD),MOD-)%MOD;
}
printf("%d",ans[n]);
return ;
}
【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP的更多相关文章
- 【CF913F】Strongly Connected Tournament 概率神题
[CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...
- 【算法学习笔记】概率与期望DP
本文学习自 Sengxian 学长的博客 之前也在CF上写了一些概率DP的题并做过总结 建议阅读完本文再去接着阅读这篇文章:Here 前言 单纯只用到概率的题并不是很多,从现有的 OI/ACM 比赛中 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 概率和期望dp
概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333 概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题: ...
- 概率与期望dp相关
概率与期望dp 概率 某个事件A发生的可能性的大小,称之为事件A的概率,记作P(A). 假设某事的所有可能结果有n种,每种结果都是等概率,事件A涵盖其中的m种,那么P(A)=m/n. 例如投掷一枚骰子 ...
- @codeforces - 913F@ Strongly Connected Tournament
目录 @description@ @solution@ @accepted code@ @details@ @description@ n 个选手参加了一场竞赛,这场竞赛的规则如下: 1.一开始,所有 ...
- 概率及期望DP小结
资源分享 26 个比较概率大小的问题 数论小白都能看懂的数学期望讲解 概念 \(PS\):不需要知道太多概念,能拿来用就行了. 定义 样本(\(\omega\)):一次随机试验产生的一个结果. 样本空 ...
- 【BZOJ-3450】Tyvj1952Easy 概率与期望DP
3450: Tyvj1952 Easy Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 468 Solved: 353[Submit][Status] ...
- BZOJ 3566 [SHOI2014]概率充电器 ——期望DP
期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...
随机推荐
- 敏捷冲刺Day7
一. 每日会议 1. 照片 2. 昨日完成工作 3. 今日完成工作 第一阶段的测试 全部队员对各个方面进行深入检查,找出细节问题 4. 工作中遇到的困难 工作中的困难:对自己做出来的产品进行否定.以求 ...
- Node.js系列——(1)安装配置与基本使用
1.安装 进入下载地址 小编下载的是msi文件,下一步下一步傻瓜式安装. 打印个hello看看: 2.REPL 全称Read Eval Print Loop,即交互式解释器,可以执行读取.执行.打印. ...
- xheditor在线编辑器在.netMVC4中的使用
在线编辑器xheditor,测试感觉不错,特把使用方法记录如下 : 先看看基本使用方法,然后用实例来操作 1.xheditor 地址 http://xheditor.com/ 2.下载最新编辑器源码 ...
- 【Java】Java CSV操作代码
CSV是逗号分隔文件(Comma Separated Values)的首字母英文缩写,是一种用来存储数据的纯文本格式,通常用于电子表格或数据库软件.在 CSV文件中,数据“栏”以逗号分隔,可允许程序通 ...
- BZOJ4878 挑战NP-Hard(dfs树)
既然是二选一,考虑两个问题有什么联系.题面没有说无解怎么办,所以如果不存在经过k条边的简单路径,一定存在k染色方案.考虑怎么证明这个东西,我们造一棵dfs树.于是可以发现如果树深>k(根节点深度 ...
- 洛谷 [USACO09OPEN]工作调度
题面 读完题,我们会发现有一个很重要的信息,每件物品代价相同,但价值不同.那么我们很容易想到,在满足限制的情况下,我们肯定会选择价值尽可能大的物品. 我们可否用背包来实现呢,答案是否定的,或者说我不会 ...
- 学Python Django学得很迷茫,怎么办?-转自知乎
本人学生,零编程基础,在学习python的过程中越学越迷茫,感觉像无头苍蝇一样,来知乎取经,下面进入正题吧: 我是先看了中谷的python教学视频,然后跟着慕课网上的python教程把题 ...
- Qt浅谈之总结(整理)
Qt浅谈之总结(整理) 来源 http://blog.csdn.net/taiyang1987912/article/details/32713781 一.简介 QT的一些知识点总结,方便以后查阅. ...
- 【hdu6093】Rikka with Number
多校第五場的題. 首先是一個好數只在某個進制下,不會是在兩個進制下都爲好數. 另外每個進制好數的個數爲d!-(d-1)!,因爲要保證第一位不爲0. 然後就是在臨界進制下有多少個好數的問題,可以變成兩個 ...
- WildFly8(JBoss)默认web服务器-------Undertow
Java微服务框架之Undertow 一.Undertow简介: Undertow 是红帽公司(RedHat)的开源产品,是 WildFly8(JBoos) 默认的 Web 服务器. 官网API给出一 ...