【洛谷 P2216】 [HAOI2007]理想的正方形(二维ST表)
题目链接
做出二维\(ST\)表,然后\(O(n^2)\)扫一遍就好了。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 1010;
const int MAXLOGN = 12;
int Max[MAXN][MAXN][MAXLOGN], Min[MAXN][MAXN][MAXLOGN], Log[MAXN];
int n, m, k, ans = 2147483647;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
return s * w;
}
int QueryMin(int x, int y){
int p = Log[k];
return min(min(Min[x][y][p], Min[x][y + k - (1 << p)][p]),
min(Min[x + k - (1 << p)][y][p], Min[x + k - (1 << p)][y + k - (1 << p)][p]));
}
int QueryMax(int x, int y){
int p = Log[k];
return max(max(Max[x][y][p], Max[x][y + k - (1 << p)][p]),
max(Max[x + k - (1 << p)][y][p], Max[x + k - (1 << p)][y + k - (1 << p)][p]));
}
int main(){
Log[0] = -1;
for(int i = 1; i <= 1000; ++i)
Log[i] = Log[i >> 1] + 1;
memset(Max, 128, sizeof Max);
memset(Min, 127, sizeof Min);
n = read(); m = read(); k = read();
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
Max[i][j][0] = Min[i][j][0] = read();
for(int l = 1; l <= 10; ++l)
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j){
Max[i][j][l] = max(max(Max[i][j][l - 1], Max[i][min(j + (1 << (l - 1)), m)][l - 1]),
max(Max[min(i + (1 << (l - 1)), n)][j][l - 1], Max[min(i + (1 << (l - 1)), n)][min(j + (1 << (l - 1)), m)][l - 1]));
Min[i][j][l] = min(min(Min[i][j][l - 1], Min[i][min(j + (1 << (l - 1)), m)][l - 1]),
min(Min[min(i + (1 << (l - 1)), n)][j][l - 1], Min[min(i + (1 << (l - 1)), n)][min(j + (1 << (l - 1)), m)][l - 1]));
}
for(int i = 1; i + k - 1 <= n; ++i)
for(int j = 1; j + k - 1 <= m; ++j)
ans = min(ans, QueryMax(i, j) - QueryMin(i, j));
printf("%d\n", ans);
return 0;
}
【洛谷 P2216】 [HAOI2007]理想的正方形(二维ST表)的更多相关文章
- 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列
题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...
- BZOJ1047[HAOI2007]理想的正方形——二维ST表
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...
- 洛谷 P2216 [HAOI2007]理想的正方形
P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...
- [洛谷P2216][HAOI2007]理想的正方形
题目大意:有一个$a\times b$的矩阵,求一个$n\times n$的矩阵,使该区域中的极差最小. 题解:二维$ST$表,每一个点试一下是不是左上角就行了 卡点:1.用了一份考试时候写的二维$S ...
- 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP
洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...
- 【DP】【单调队列】洛谷 P2216 [HAOI2007]理想的正方形 题解
算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 ...
- 洛谷P2216 HAOI2007 理想的正方形 (单调队列)
题目就是要求在n*m的矩形中找出一个k*k的正方形(理想正方形),使得这个正方形内最值之差最小(就是要维护最大值和最小值),显然我们可以用单调队列维护. 但是二维平面上单调队列怎么用? 我们先对行处理 ...
- 【BZOJ1047】[HAOI2007]理想的正方形 (倍增ST表)
[HAOI2007]理想的正方形 题目描述 有一个\(a*b\)的整数组成的矩阵,现请你从中找出一个\(n*n\)的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: ...
- [HNOI2007] 理想正方形 二维ST表
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...
- 洛谷 P2216 [HAOI2007]理想正方形
洛谷 巨说这是一道单调队列好题,但是我并不是用单调队列做的诶. 如果往最暴力的方向去想,肯定是\(n^3\)的\(dp\)了. \(f[i][j][k]\)代表当前正方形的左上角定点是\((i,j)\ ...
随机推荐
- CCF——数列分段201509-1
问题描述 给定一个整数数列,数列中连续相同的最长整数序列算成一段,问数列中共有多少段? 输入格式 输入的第一行包含一个整数n,表示数列中整数的个数. 第二行包含n个整数a1, a2, …, an,表示 ...
- (十二)Jmeter之Bean Shell的使用(一)
一.什么是Bean Shell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法; BeanShell是一种松散类型的脚本语言(这点和JS类似); BeanS ...
- php中扩展pecl与pear
要为大家分享的内容是PECL 和 PEAR 他们之间的不同和相同之处. PEAR 是“PHP Extension and Application Repository”的缩写,即PHP扩展和应用仓库. ...
- Android自定义XML属性以及遇到的命名空间的问题
转载请注明出处:http://www.cnblogs.com/kross/p/3458068.html 最近在做一些UI,很蠢很蠢的重复写了很多代码,比如一个自定义的UI Tab,由一个ImageVi ...
- TP中模型实例化
模型的实例化操作(重点) 模型虽然已经创建完成,但是由于模型的本质是一个类,类在使用的时候需要实例化操作. 5.1.普通实例化方法 普通实例化方法是指通过自己编写代码来new一个对象. $obj = ...
- 教你配置使用阿里云 Maven 库,体验秒下 jar 包的快感
鉴于国内的网络环境,从默认 Maven 库下载 jar 包是非常的痛苦. 速度慢就不说了,还经常是下不下来,然后一运行就是各种 ClassNotFoundException,然后你得找到残留文件删掉重 ...
- 转发---[沧海拾遗]java并发之CountDownLatch、Semaphore和CyclicBarrier
JAVA并发包中有三个类用于同步一批线程的行为,分别是CountDownLatch.Semaphore和CyclicBarrier. CountDownLatch CountDownLatch是一个计 ...
- Oracle 同名字段的该行数据按照创建时间最新的隐藏其他
1.需求,表 SYS_INFO 的 NAME 字段会重复,按照 创建时间CREATE_AT 字段,取最新一条,其他隐藏 SELECT * FROM (SELECT T.*,ROW_NUMBER ...
- WebDriver的定位元素方法
如果把页面上的元素看作人的话,在现实世界如何找到某人呢?方法有三: 一.通过人本身的属性,例如他的姓名,手机号,身份证号,性别,这些可区别他人的属性.在web页面上的元素也有这些属性,例如,id.na ...
- SSH 阿里云服务器
1.在服务机上操作 创建要远程登录的用户和密码 sudo adduser username 正在添加用户“username”... 正在添加新组“username”(1001)... 正在添加新 ...