【题意】给定n棵高度初始为0的草,每天每棵草会长高a[i],m次收割,每次在d[i]天将所有>b[i]的草收割到b[i],求每次收割量。n<=500000。

【算法】线段树上二分

【题解】按照生长速度a[]排序后,容易发现数列永远单调。

在线段树上的区间维护以下值:

1.最后一棵草的高度a

2.上次收割日期b

3.总的草高和c

4.总的生长速度和d

5.收割标记D和B

上传的时候注意右区间收割晚于左区间时强制合并。

下传的时候注意标记D和B直接覆盖。

线段树上二分:

1.判断当前区间是否符合(一般为区间最右端点),否则返回r+1

2.若l=r,返回。

3.查询左区间。

4.若左区间不符合,查询右区间。

过程中可以顺便查询答案和修改标记。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
#define int long long
using namespace std;
int read(){
int s=,t=;char c;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
const int maxn=;
int a[maxn],sum,n,m;
struct tree{int l,r,a,b,c,d,B,D;}t[maxn*];
void modify(int k,int B,int D){t[k].B=B;t[k].D=D;t[k].a=B;t[k].b=D;t[k].c=B*(t[k].r-t[k].l+);}
void up(int k){
t[k].a=t[k<<|].a;
t[k].b=t[k<<|].b;
t[k].c=t[k<<].c+t[k<<].d*(t[k<<|].b-t[k<<].b)+t[k<<|].c;
}
void down(int k){
if(t[k].D){
modify(k<<,t[k].B,t[k].D);modify(k<<|,t[k].B,t[k].D);
t[k].B=t[k].D=;
}
}
void build(int k,int l,int r){
t[k].l=l;t[k].r=r;
if(l==r){t[k].a=;t[k].b=;t[k].c=;t[k].d=a[l];return;}
int mid=(l+r)>>;
build(k<<,l,mid);build(k<<|,mid+,r);
up(k);
t[k].d=t[k<<].d+t[k<<|].d;
}
void plus(int k,int D,int B){sum+=t[k].c+t[k].d*(D-t[k].b)-B*(t[k].r-t[k].l+);modify(k,B,D);}
int find(int k,int D,int B){
if(t[k].a+a[t[k].r]*(D-t[k].b)<=B)return t[k].r+;
if(t[k].l==t[k].r){
plus(k,D,B);
return t[k].r;
}
down(k);
int num;
if((num=find(k<<,D,B))<=t[k<<].r){
plus(k<<|,D,B);
}
else num=find(k<<|,D,B);
up(k);
return num;
}
#undef int
int main(){
#define int long long
n=read();m=read();
for(int i=;i<=n;i++)a[i]=read();
sort(a+,a+n+);
build(,,n);
while(m--){
int D=read(),B=read();
sum=;
find(,D,B);
printf("%lld\n",sum);
}
return ;
}

写复杂的题目前一定要列好程序草稿,把细节都写清楚,程序写出来就会比较清晰,不容易犯错。

原来这么复杂的题目也是可以1A的(躺

【BZOJ】4293: [PA2015]Siano 线段树上二分的更多相关文章

  1. BZOJ.4293.[PA2015]Siano(线段树)

    题目链接 \(Description\) 有一片n亩的土地,要在这上面种草. 在每一亩土地上都种植了一种独一无二的草,其中,第\(i\)亩土地的草每天会长高\(a[i]\)厘米. 一共会进行\(m\) ...

  2. LOJ 3059 「HNOI2019」序列——贪心与前后缀的思路+线段树上二分

    题目:https://loj.ac/problem/3059 一段 A 选一个 B 的话, B 是这段 A 的平均值.因为 \( \sum (A_i-B)^2 = \sum A_i^2 - 2*B \ ...

  3. 贪心+离散化+线段树上二分。。。 Samara University ACM ICPC 2016-2017 Quarterfinal Qualification Contest G. Of Zorcs and Axes

    题目链接:http://codeforces.com/gym/101149/problem/G 题目大意:给你n对数字,为(a[i], b[i]),给你m对数字,为(w[i], c[i]).给n对数字 ...

  4. hdu 5930 GCD 线段树上二分/ 强行合并维护信息

    from NOIP2016模拟题28 题目大意 n个点的序列,权值\(<=10^6\) q个操作 1.单点修改 2.求所有区间gcd中,不同数个数 分析 1.以一个点为端点,向左或向右的gcd种 ...

  5. HDU 4747 Mex【线段树上二分+扫描线】

    [题意概述] 一个区间的Mex为这个区间没有出现过的最小自然数,现在给你一个序列,要求求出所有区间的Mex的和. [题解] 扫描线+线段树. 我们在线段树上维护从当前左端点开始的前缀Mex,显然从左到 ...

  6. [NOIP2015模拟10.27] [JZOJ4270] 魔道研究 解题报告(动态开点+权值线段树上二分)

    Description “我希望能使用更多的魔法.不对,是预定能使用啦.最终我要被大家称呼为大魔法使.为此我决定不惜一切努力.”——<The Grimoire of Marisa>雾雨魔理 ...

  7. 【洛谷5537】【XR-3】系统设计(哈希_线段树上二分)

    我好像国赛以后就再也没有写过 OI 相关的博客 qwq Upd: 这篇博客是 NOIP (现在叫 CSP 了)之前写的,但是咕到 CSP 以后快一个月才发表 -- 我最近这么咕怎么办啊 -- 题目 洛 ...

  8. 5.4 省选模拟赛 修改 线段树优化dp 线段树上二分

    LINK:修改 题面就不放了 大致说一下做法.不愧是dls出的题 以前没见过这种类型的 不过还是自己dp的时候写丑了. 从这道题中得到一个结论 dp方程要写的优美一点 不过写的过丑 优化都优化不了. ...

  9. 9 16 模拟赛&关于线段树上二分总结

    1 考试时又犯了一个致命的错误,没有去思考T2的正解而是去简单的推了一下式子开始了漫漫找规律之路,不应该这样做的 为了得到规律虽然也打了暴力 但是还是打了一些不必要的程序 例如求组合数什么的比较浪费时 ...

随机推荐

  1. 使用ssh公钥登陆

    记录一下使用的具体命令,具体参考: Centos设置禁止密码登录而只使用密钥登录SSH方法  优先参考这个. ssh使用公钥授权不通过的问题解决 Xshell配置ssh免密码登录-密钥公钥(Publi ...

  2. PAT---福尔摩斯约会时间

    主要为字符串的处理,注意读懂题目意思. 设置输出域宽和填充字符的函数分别为setw(int n),setfill(char c);两个函数的头文件为#include<iomanip>; # ...

  3. jQuery的2把利器

    <!-- $是一个函数,首先是给window添加$,然后该值是一个函数,函数返回的值是对象.1. jQuery核心函数 * 简称: jQuery函数($/jQuery) * jQuery库向外直 ...

  4. ant 安装及基础教程 !

    这篇文章主要介绍了ant使用指南详细入门教程,本文详细的讲解了安装.验证安装.使用方法.使用实例.ant命令等内容,需要的朋友可以参考下   一.概述 ant 是一个将软件编译.测试.部署等步骤联系在 ...

  5. 用putty玩linux的时候由于以前用window 习惯写完东西按一下ctrl+s 保存

    问题描述:用putty玩linux的时候由于以前用window 习惯写完东西按一下ctrl+s 保存,但是在putty一按下就不能再输入了.后来查找到:ctrl+s 是putty的一个命令大概是这样子 ...

  6. 【Nginx】均衡负载权重模式实现session数据同步

    思路:把session存放到一个公共redis服务器上 每次浏览器请求服务端都会带上cookie,因为使用的是权重负载均衡方案,因此nginx反向代理服务器会把请求发放到不同的服务端,服务端用cook ...

  7. Bare metal APIs with ASP.NET Core MVC(转)

    ASP.NET Core MVC now provides a true "one asp.net" framework that can be used for building ...

  8. Delphi 组件渐进开发浅谈(二)——双简合璧

    2.双简合璧2.1.带有T[x]Label的T[x]Edit组件 请允许我用[x]的书写方式来表示不同的对象.因为随后将大量提及TLabeledEdit与TTntLabeledEdit.TCustom ...

  9. USB硬件接口相关

    1.USB 设备端的D+为何要拉一个1.5K电阻到3.3v上?(USB是5v供电,但通信的电平是3.3v,所以上拉电平为3.3v:若要上拉到5v,则上拉电阻为10k) usb有主从设备之分,主设备有: ...

  10. 【JQuery】事件

    一.前言        接着上一章选择器的知识,继续啊jQuery的学习 二.内容 $(function(){}) 文档初始化加载 event.pageX 相对于文档左边缘的鼠标位置 event.pa ...