Transistor latch improves on/off circuitry
Figure 1 shows an example of on/off circuitry commonly used in battery-operated devices. The p-channel MOSFET, Q1, serves as a power switch. When you push the On button, S1, Q1's gate goes low. Q1 turns on and supplies battery voltage to the dc/dc converter. Depending on the battery voltage in the device, the dc/dc converter might convert the voltage either up or down. In either case, it supplies VCC to the µC. The µC goes through its power-up software sequence and programs one of its general-purpose I/O pins, setting it to logic one. This operation, in turn, causes saturation of the npn transistor, Q2, which "confirms" the power-up state. Later, when the µC decides to power itself off, the µC simply sets its I/O output to logic zero, and Q1returns to its off state. The circuit is simple and reliable but has a significant disadvantage. It usually takes a fraction of a second for the dc/dc converter to reach its stable output voltage. Then, the µC's Reset pulse usually lasts 50 to 200 msec. After the release of Reset, the µC must go through its "housekeeping" start-up code before it has a chance to set its I/O pin to logic one. This delay in some portable systems may be user-unfriendly, because if you don't depress the On button long enough, the system will not power up. The circuit in Figure 2 eliminates this uncertainty.
The circuit includes a simple two-transistor latch, which the On button switches to the on state. As in Figure 1, the p-channel MOSFET, Q1, serves as a power switch. When you push the On button, S1, it causes saturation of the npn transistor, Q4, via the base-current-limiting resistor, R5. The collector current of Q4 flows through R1 and the base-emitter junction of pnp transistor Q3, thereby saturating Q3. Q3 redirects some current into the base-emitter junction of Q4 and finishes the latching process. At this point, both Q3 and Q4 are saturated, and the voltage on the gate of Q1 is a function of the voltage drop across the base-emitter junction of Q3 and the saturation voltage of Q4. This voltage is approximately 0.9V. The µC need not confirm the on state of the latch. When the µC powers up and finishes its housekeeping start-up code, it programs the I/O pin to logic zero.
Later, when the µC decides to power itself off, it programs the I/O pin to logic one and stops. Q2 turns off Q4, resetting the latch to its initial off state. R4 lowers the equivalent input impedance of Q3. This function improves EMI and ESD noise immunity and prevents the circuit from turning itself on in the presence of strong electromagnetic fields. Capacitor C1 in combination with R5 protects Q4 and Q2 from direct ESD into the pushbutton. Some portable devices use undervoltage-lockout circuitry. This circuitry usually uses a voltage comparator with a built-in voltage reference. If the battery voltage drops below the threshold, the output of the comparator (usually an open-drain type) switches low. If your portable system uses this type of circuitry, you can connect the open-drain output of the comparator in parallel with Q2, thus preventing the latch from turning on if the battery voltage is too low.


Transistor latch improves on/off circuitry的更多相关文章
- Dual transistor improves current-sense circuit
In multiple-output power supplies in which a single supply powers circuitry of vastly different curr ...
- RFID Exploration and Spoofer a bipolar transistor, a pair of FETs, and a rectifying full-bridge followed by a loading FET
RFID Exploration Louis Yi, Mary Ruthven, Kevin O'Toole, & Jay Patterson What did you do? We made ...
- Transistor 晶体管 场效应 双极型 达林顿 CMOS PMOS BJT FET
Transistor Tutorial Summary Transistor Tutorial Summary Bipolar Junction Transistor Tutorial We can ...
- Inverted bipolar transistor doubles as a signal clamp
A number of circuits, such as level detectors and AM demodulators, benefit from a rectifier with a l ...
- PatentTips - Integrated circuit well bias circuitry
1. Field of the Invention This invention relates in general to an integrated circuit and more specif ...
- PMON failed to acquire latch, see PMON dump
前几天,一台Oracle数据库(Oracle Database 10g Release 10.2.0.4.0 - 64bit Production)监控出现"PMON failed to a ...
- [转载】——故障排除:Shared Pool优化和Library Cache Latch冲突优化 (文档 ID 1523934.1)
原文链接:https://support.oracle.com/epmos/faces/DocumentDisplay?_adf.ctrlstate=23w4l35u5_4&id=152393 ...
- Latch2:Latch和性能
1,数据的IO操作 SQL Server访问的任何一个Page必须存在于内存中,如果不存在于内存中,那么SQL Server发出 Disk IO请求,将数据页从Disk读取到内存中,然后SQL Ser ...
- 相克军_Oracle体系_随堂笔记014-锁 latch,lock
1.Oracle锁类型 2.行级锁:DML语句 3.表级锁:TM 4.锁的兼容性 5.加锁语句以及锁的释放 6.锁相关视图 7.死锁 1.Oracle锁类型 锁的作用 latch锁:chain ...
随机推荐
- Deep Learning基础--Softmax求导过程
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...
- laravel 上传文件到亚马逊 aws s3
参考: https://github.com/aws/aws-sdk-php-laravel https://www.jianshu.com/p/e48d82bff20b
- Next Permutation——简单、经典
Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...
- wxPython 画图板
终于开始Python学习之旅了,姑且以一个“画图板”小项目开始吧.放慢脚步,一点一点地学习. 1月28日更新 第一次遇到的麻烦便是“重绘”,查了好多资料,终于重绘成功了. #-*- encoding: ...
- PHP原理之变量
作者: Laruence( ) 本文地址: http://www.laruence.com/2008/08/22/412.html 转载请注明出处 或许你知道,或许你不知道,PHP是一个弱类型,动 ...
- ThinkPHP 多语言的实现
1.按照官方文档进行修改 2.注意区分项目语言包和系统语言包 3.实现语言包和数据库语言同步切换 4.thinkPHP多语言实现与Cookie有关, 谷歌浏览器下按F12查看Request Heade ...
- SCU 4441 Necklace
最长上升子序列,枚举. 因为$10000$最多只有$10$个,所以可以枚举采用哪一个$10000$,因为是一个环,所以每次枚举到一个$10000$,可以把这个移到最后,然后算从前往后的$LIS$和从后 ...
- salt 常用命令整理
salt 常用命令整理 ***********模块*********** 查看模块列表module salt 'minion' sys.list_modules 查看指定module的function ...
- Spring框架中ModelAndView、Model、ModelMap区别 (转)
原文地址:http://www.cnblogs.com/google4y/p/3421017.html SPRING框架中ModelAndView.Model.ModelMap区别 注意:如果方法 ...
- 【交叉染色法判断二分图】Claw Decomposition UVA - 11396
题目链接:https://cn.vjudge.net/contest/209473#problem/C 先谈一下二分图相关: 一个图是二分图的充分必要条件: 该图对应无向图的所有回路必定是偶环(构成该 ...