2016 Multi-University Training Contest 1 G. Rigid Frameworks
Rigid Frameworks
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 337 Accepted Submission(s): 273
Maid xiaodao is learning theoretical computer science in her spare time, and recently she was fascinated by Professor Erik Demaine's Geometric Folding Algorithms - Linkages, Origami, Polyhedra. The following problem was inspired by this book.
Recall that a graph is a collection of vertices and edges connecting the vertices, and that two vertices connected by an edge are called adjacent. Graphs can be embedded in Euclidean space by associating each vertex with a point in the Euclidean space.
⋅ A flexible graph is an embedding of a graph where it is possible to move one or more vertices continuously so that the distance between at least two nonadjacent vertices is altered while the distances between each pair of adjacent vertices is kept constant.
⋅ A rigid graph is an embedding of a graph which is not flexible. Informally, a graph is rigid if by replacing the vertices with fully rotating hinges and the edges with rods that are unbending and inelastic, no parts of the graph can be moved independently from the rest of the graph.
Sit down and relax, to simplify the problem, let's only consider the planar graphs as grids. The grid graphs embedded in the Euclidean plane are not rigid, as the following animation demonstrates:
However, one can make them rigid by adding diagonal edges to the cells. For example, the following picture shows a 2 × 3 grid graph.
Note that you can add at most one orientation of a diagonal edge in one single cell. In fact, there are 448 ways to make a 2 × 3 grid graph rigid. And now we want to know, how many different rigid m × n grid graph with diagonal edges in total? Dear contestant, could you please find it out?
3 2
7 9
10 10
448
357533852
935300639
题意:
一个n*m的网格,如题目中图片所示。
所有的点都是交接点,所有的直线都是不可拉伸的铁棍。
这样这个网格是可以活动的。
现在可以在某些网格中在对角线上添加不可拉伸的铁棍。
同一个网格只能添加一次。
这样添加完后,若网格个不可活动,则为稳定。 问,使网格稳定的添边方式有多少种?
题解:
首先,要知道:
1、每一列水平的直线之间是平行的,每一行竖直的直线之间也是平行的。
2、题目要求的稳定,就是要求横着的直线和竖着的直线都垂直。
这里的直线是那一条条小线段,下文中的小直线、直线都是一个意思。 如果我在第(i,j)个格子添加了斜线,
那么第i行的小直线和第j列小直线就必然垂直了。 所以如果我把这n个行作为左边的点,m个列作为右边的点。
添加对角线使它们垂直就相当于在对应点对之间连一条边。
注意这种垂直关系是可以传递的。 所以问题转换成了,是一个左边n个点,右边m个点的二分图,
有多少种方式连边使它们连通。
其中每个点对的连边方式有两种(主对角线、副对角线) 那么这个方式怎么统计?
若是随意连边,总方案数为3^(n*m)种。
因为n*m对边可以连,也可以不连,连有两种,不连一种。 考虑二分图不连通的方案数:
那么至少左边1号点所在的连通快不会包含所有点。 所以只需要枚举1号点所在的连通快大小,
计算出当1号点所在连通块大小为所枚举的时候的方案数就可以了。
枚举时可以枚举1号点所在连通块左边有i个点,右边有j个点。
那么连边方案数就为f[i][j],恰好是个子问题。 所以若令f[n][m]为左边n个点,右边m个点的二分图的连通方案数。
f[n][m] = 3^(n*m) -
sigma(0<=i<n, sigma(0<=j<=m,
f[i + 1][j] * C(n - 1, i) * C(m, j) * 3^( (n-1-i)*(m-j) )
))
const int N = , MOD = 1e9 + ;
int n, m, f[N][N], all[N * N], C[N][N]; inline int add(int x, int y) {
return (((x + y) % MOD) + MOD) % MOD;
} inline int mul(int x, int y) {
return (((x * 1ll * y) % MOD) + MOD) % MOD;
} inline void init() {
all[] = ;
for(int i = ; i < * ; ++i) all[i] = mul(all[i - ], ); for(int i = ; i < N; ++i) C[i][] = ;
for(int i = ; i < N; ++i)
for(int j = ; j < N; ++j)
C[i][j] = add(C[i - ][j - ], C[i - ][j]); for(int n = ; n <= ; ++n)
for(int m = ; m <= ; ++m) {
f[n][m] = all[n * m];
for(int lef = ; lef < n; ++lef)
for(int rig = ; rig <= m; ++rig) {
if(lef == n - && rig == m) continue;
f[n][m] = add(f[n][m],
-mul(mul(mul(C[n - ][lef], C[m][rig]),
f[lef + ][rig]),
all[(n - lef - ) * (m - rig)]));
}
}
} int main() {
init();
while(scanf("%d%d", &n, &m) == ) printf("%d\n", f[n][m]);
return ;
}
2016 Multi-University Training Contest 1 G. Rigid Frameworks的更多相关文章
- 2016 Al-Baath University Training Camp Contest-1 G
Description The forces of evil are about to disappear since our hero is now on top on the tower of e ...
- 2016 Al-Baath University Training Camp Contest-1
2016 Al-Baath University Training Camp Contest-1 A题:http://codeforces.com/gym/101028/problem/A 题意:比赛 ...
- 2016 Al-Baath University Training Camp Contest-1 E
Description ACM-SCPC-2017 is approaching every university is trying to do its best in order to be th ...
- 2016 Al-Baath University Training Camp Contest-1 F
Description Zaid has two words, a of length between 4 and 1000 and b of length 4 exactly. The word a ...
- 2016 Al-Baath University Training Camp Contest-1 A
Description Tourist likes competitive programming and he has his own Codeforces account. He particip ...
- [CFGym101028] 2016 Al-Baath University Training Camp Contest-1
比赛链接:http://codeforces.com/gym/101028/ 由于实习,几乎没有时间刷题了.今天下午得空,断断续续做了这一套题,挺简单的. A.读完题就能出结果. /* ━━━━━┒ギ ...
- 2016 Al-Baath University Training Camp Contest-1 J
Description X is fighting beasts in the forest, in order to have a better chance to survive he's gon ...
- 2016 Al-Baath University Training Camp Contest-1 I
Description It is raining again! Youssef really forgot that there is a chance of rain in March, so h ...
- 2016 Al-Baath University Training Camp Contest-1 H
Description You've possibly heard about 'The Endless River'. However, if not, we are introducing it ...
随机推荐
- Linux或Unix环境利用符号链接升级Maven
1,解压Maven到安装目录,在解压目录同一级创建刚解压目录的符号链接,命令如下: ln -s apache-maven-3.3.9 apache-maven 2,配置环境变量,这里Maven主目录环 ...
- Linux(Ubuntu)下安装NodeJs
用以下命令来升级系统,并且安装一些Node.JS必要的包. Linux(Ubuntu)下安装NodeJs 安装nodeJS之前,如果没有安装g++ make libssl-dev等, 1.更新系统和依 ...
- pyqt信号和槽应用举例
第一篇手写随笔. 项目的部分代码: 在子线程中改变主窗体的标签. class MyForm(QDialog): def __init__(self, parent=None): self.config ...
- 深入理解android:id以及@+id/name和@id/name的区别联系
今天为了好好研究了下@+id/name和@id/name的区别以及联系,又翻了翻文档/guide/topics/resources/layout-resource.html中关于 android:id ...
- VMware ubuntu中执行python文件的操作小结
- Flask安装过程中“配置虚拟环境”步骤报错,找不到activate.bat
Run virtualenv venv --no-setuptools http://stackoverflow.com/questions/21826859/setting-up-a-virtual ...
- oracle 学习笔记(一)
1. 数据库原理 1.1. 数据库简介 1.1.1. 文件存储 对数据的存储需求一直存在.保存数据的方式,经历了手工管理.文件管理等阶段,直至数据库管理阶段. 文件存储方式保存数据的弊端: 缺乏对数据 ...
- JDBC的批处理操作三种方式 pstmt.addBatch()
package lavasoft.jdbctest; import lavasoft.common.DBToolkit; import java.sql.Connection; import java ...
- C# 程序异常管理方案
C# 程序异常管理方案 1.程序出现未处理异常(程序中未捕获异常.添加异常处理) 2.程序添加全局异常捕获 tip:程序已处理异常不在捕获范围内. /// <summary> /// 应用 ...
- cocos2d-js 学习笔记 --安装调试(2)
对于初学者安装cocos2d-js的环境并没有教程中说的那么简单,至少笔者是这么认为的 第一步,下载cocos2d-js的SDK,(先别着急运行) 第二步,安装Cocos2d console ,(Ma ...