/*
最大权闭合图模板类型的题,考验对知识概念的理解。 题意:如今要辞退一部分员工。辞退每个员工能够的到一部分利益(能够是负的),而且辞退员工,必须辞退他的下属。求最大利益和辞退的最小人数。 最大权闭合图模板类型。 求出最大权后沿着源点s,dfs到的点就为最小的人数。
证明/*
转载:利用一个经典的trick:多keyword
> 建图前,对全部b[i],运行变换b[i]=b[i]*10000-1。然后。会惊异地发现,
> 此时最大流所相应的方案就是满足辞退最少人数的了。
> 为什么?显然,变换后的流量r2除以10000后再取整就等于原来的流量,可是
> r2的后四位却蕴含了辞退人数的信息:每多辞退一个人,流量就会少1。
>
> 剩下的就是怎样依据一个网络流输出方案。 > 我的做法:从源点開始沿着残余网络dfs(仅仅走没有满载的边),
> 能dfs到的点相应的人就是须要辞退的。*/
*/
#include"stdio.h"
#include"string.h"
#include"string"
#include"queue"
#define ll __int64
#define N 9999
#define inf 0x3fffffff
using namespace std;
struct node {
ll u,v,w,next;
}bian[N*50];
ll fee[N];
ll head[N],yong,s,t,dis[N];
void init(){
yong=0;
memset(head,-1,sizeof(head));
memset(dis,-1,sizeof(dis));
}
void addedge(ll u,ll v,ll w) {
bian[yong].u=u;
bian[yong].v=v;
bian[yong].w=w;
bian[yong].next=head[u];
head[u]=yong++;
}
void add(ll u,ll v,ll w) {
addedge(u,v,w);
addedge(v,u,0);
}
void bfs() {
ll u,v,i;
queue<ll>q;
q.push(t);
dis[t]=0;
while(!q.empty()) {
u=q.front();
q.pop();
for(i=head[u];i!=-1;i=bian[i].next) {
v=bian[i].v;
if(dis[v]==-1) {
dis[v]=dis[u]+1;
q.push(v);
}
}
}
return ;
}
ll ISAP() {
ll sum=0;
bfs();
ll gap[N],cur[N],stac[N],top,i;
memset(gap,0,sizeof(gap));
for(i=s;i<=t;i++) {
gap[dis[i]]++;
cur[i]=head[i];
}
ll k=s;
top=0;
while(dis[s]<t+1) {
if(k==t) {
ll minn=inf,index;
for(i=0;i<top;i++) {
ll e=stac[i];
if(minn>bian[e].w) {
minn=bian[e].w;
index=i;
}
}
for(i=0;i<top;i++) {
ll e=stac[i];
bian[e].w-=minn;
bian[e^1].w+=minn;
}
sum+=minn;
top=index;
k=bian[stac[top]].u;
}
for(i=cur[k];i!=-1;i=bian[i].next) {
ll v=bian[i].v;
if(bian[i].w&&dis[k]==dis[v]+1) {
cur[k]=i;
k=v;
stac[top++]=i;
break;
}
}
if(i==-1) {
ll m=t+1;
for(i=head[k];i!=-1;i=bian[i].next)
if(m>dis[bian[i].v]&&bian[i].w) {
m=dis[bian[i].v];
cur[k]=i;
}
if(--gap[dis[k]]==0)break;
gap[dis[k]=m+1]++;
if(k!=s)
k=bian[stac[--top]].u;
}
}
return sum;
}
ll cou=0,vis[N];
void dfs(ll u){//,ll pre) {会形成环越界
ll i,j;
cou++;
vis[u]=1;
for(i=head[u];i!=-1;i=bian[i].next) {
j=bian[i].v;
if(bian[i].w&&!vis[j]) {
dfs(j);
}
}
return ;
}
int main() {
ll n,m,i,j,sum;
while(scanf("%I64d%I64d",&n,&m)!=EOF) {
init();
s=0;t=n+1;sum=0;
for(i=1;i<=n;i++) {
scanf("%I64d",&fee[i]);
if(fee[i]>0) {
add(s,i,fee[i]);
sum+=fee[i];
}
else
add(i,t,-fee[i]);
}
while(m--) {
scanf("%I64d%I64d",&i,&j);
add(i,j,inf);
}
cou=0;
sum=sum-ISAP();
memset(vis,0,sizeof(vis));
dfs(0);
printf("%I64d %I64d\n",cou-1,sum);
}
return 0;
}

hdu 2987最大权闭合图模板类型题的更多相关文章

  1. hdu 3879 最大权闭合图(裸题)

    /* 裸的最大权闭合图 解:参见胡波涛的<最小割模型在信息学竞赛中的应用 #include<stdio.h> #include<string.h> #include< ...

  2. hdu 3879 hdu 3917 构造最大权闭合图 俩经典题

    hdu3879  base station : 各一个无向图,点的权是负的,边的权是正的.自己建一个子图,使得获利最大. 一看,就感觉按最大密度子图的构想:选了边那么连接的俩端点必需选,于是就以边做点 ...

  3. poj 2987(最大权闭合图+割边最少)

    题目链接:http://poj.org/problem?id=2987 思路:标准的最大权闭合图,构图:从源点s向每个正收益点连边,容量为收益:从每个负收益点向汇点t连边,容量为收益的相反数:对于i是 ...

  4. hdu 3061 hdu 3996 最大权闭合图 最后一斩

    hdu 3061 Battle :一看就是明显的最大权闭合图了,水提......SB题也不说边数多少....因为开始时候数组开小了,WA....后来一气之下,开到100W,A了.. hdu3996. ...

  5. poj 2987 最大权闭合图

    Language: Default Firing Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 8744   Accept ...

  6. hdu 3917 (最大权闭合图)

    题意:政府有一些路,m个公司来修,每个公司修路要交税给政府,修路政府要付给公司费用,求政府能获得的最大利润,如果选择一个公司负责一个项目,那么该公司负责的其它项目也必须由他负责,并且与其有相连关系的公 ...

  7. hdu 3996 (最大权闭合图)

    题意:有n个区域布局,每个区域有一些金矿,挖开金矿需要一定的费用,可以得到一定的利润,要想挖开一个金矿,必须挖开所有在这个金矿上边的金矿,求最大利益,给的数据价值太大,用64位. 分析:如果一个金矿可 ...

  8. hdu 3061 (最大权闭合图)

    分析:城池之间有依赖关系,汇点与能获得兵力的城池连接,容量为可以获得的兵力,损耗兵力的城池与汇点连接容量为损耗的兵力,有依赖关系的城池间连边,容量为无穷大,跑网络流求出的最小割就是损耗的最小兵力,,, ...

  9. HDU 3917 最大权闭合图 求最小割

    具体参考http://blog.csdn.net/power721/article/details/6665750 TODO //#pragma comment(linker, "/STAC ...

随机推荐

  1. UIScrollView 几乎所有的属性和方法

    - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view, typica ...

  2. Andorid之Annotation框架初使用(二)

    Fragment: @EActivity(R.layout.fragments) public class MyFragmentActivity extends FragmentActivity { ...

  3. CSS学习要点

    目标 掌握CSS基本语法,了解如何应用CSS到Html元素上并能熟练使用CSS进行元素布局. 要点 CSS基本概念.存在的意义 CSS 指层叠样式表 (Cascading Style Sheets), ...

  4. iOS: 如何调节UITabbarItem的图片和文字位置

    转载自:http://blog.csdn.net/kevinwlc/article/details/21467499/ 在ios7中,方法setFinishedSelectedImage:withFi ...

  5. django单表操作 增 删 改 查

    一.实现:增.删.改.查 1.获取所有数据显示在页面上 model.Classes.object.all(),拿到数据后,渲染给前端;前端通过for循环的方式,取出数据. 目的:通过classes(班 ...

  6. iOS公布app到App Store教程

    要公布首先须要公布证书,其获取和安装的基本流程和真机调试证书一致,关于真机调试证书的获取和使用能够參考这篇文章.只是如今Xcode7不须要真机调试证书也可实现真机调试了.能够參考这篇文章. 要获取证书 ...

  7. 字符串转成整型(int)

    1 题目 Implement atoito convert a string to an integer. Hint: Carefullyconsider all possible input cas ...

  8. Git使用帮助

    1. 本地创建新项目 git init git add . git commit -m "First commit" 2. 本地代码同步Push到远程仓库 git remote a ...

  9. C++标准库简介

    C++标准库的所有头文件都没有扩展名.C++标准库的内容总共在50个标准头文件中定义,其中18个提供了C库的功能. <cname>形式的标准头文件[ <complex>例外]其 ...

  10. Linq 使用注意

    今天在使用Linq的时候,查询很慢.仔细查看在知道,在in的后面跟的是个方法,这个方法返回一个集合. Linq只是语法糖,内部进行了封装.内部的实现也是遍历集合,找到满足条件的元素. 在in的后面使用 ...