TF随笔-7
求平均值的函数
reduce_mean
axis为1表示求行
axis为0表示求列
>>> xxx=tf.constant([[1., 10.],[3.,30.]])
>>> sess.run(xxx)
array([[ 1., 10.],
[ 3., 30.]], dtype=float32)
>>> mymean=tf.reduce_mean(xxx,0)
>>> sess.run(mymean)
array([ 2., 20.], dtype=float32)
>>> mymean=tf.reduce_mean(xxx,1)
>>> sess.run(mymean)
array([ 5.5, 16.5], dtype=float32)
>>>
) ==> [1.5, 1.5]
tf.reduce_mean(x, 1) ==> [1., 2.]
Args:
input_tensor: The tensor to reduce. Should have numeric type.axis: The dimensions to reduce. IfNone(the default), reduces all dimensions.keep_dims: If true, retains reduced dimensions with length 1.name: A name for the operation (optional).reduction_indices: The old (deprecated) name for axis.
tf.pow
pow(
x,
y,
name=None
)
Defined in tensorflow/python/ops/math_ops.py.
See the guide: Math > Basic Math Functions
Computes the power of one value to another.
Given a tensor x and a tensor y, this operation computes \\(x^y\\) for corresponding elements in x and y. For example:
# tensor 'x' is [[2, 2], [3, 3]]
# tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
class tf.train.AdamOptimizer
__init__(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam')
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 10 09:35:04 2017
@author: myhaspl@myhaspl.com,http://blog.csdn.net/myhaspl"""
import tensorflow as tf
import numpy as np
batch_size=10
w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))
x=tf.placeholder(tf.float32,shape=(None,2),name="x")
y=tf.placeholder(tf.float32,shape=(None,1),name="y")
h=tf.matmul(x,w1)
yo=tf.matmul(h,w2)
#损失函数计算差异平均值
cross_entropy=tf.reduce_mean(tf.abs(y-yo))
#反向传播
train_step=tf.train.AdamOptimizer().minimize(cross_entropy)
#生成200个随机样本
DATASIZE=200
x_=np.random.rand(DATASIZE,2)
y_=[[int((x1+x2)>2.5)] for (x1,x2) in x_]
with tf.Session() as sess:
#初始化变量
init_op=tf.global_variables_initializer()
sess.run(init_op)
print sess.run(w1)
print sess.run(w2)
#设定训练轮数
TRAINCOUNT=10000
for i in range(TRAINCOUNT):
#每次递进选择一组
start=(i*batch_size) % DATASIZE
end=min(start+batch_size,DATASIZE)
#开始训练
sess.run(train_step,feed_dict={x:x_[start:end],y:y_[start:end]})
if i%1000==0:
total_cross_entropy=sess.run(cross_entropy,feed_dict={x:x_[start:end],y:y_[start:end]})
print("%d 次训练之后,损失:%g"%(i+1,total_cross_entropy))
print(sess.run(w1))
print(sess.run(w2))
[[-0.81131822 1.48459876 0.06532937 -2.4427042 0.0992484 0.59122431]
[ 0.59282297 -2.12292957 -0.72289723 -0.05627038 0.64354479 -0.26432407]]
[[-0.81131822]
[ 1.48459876]
[ 0.06532937]
[-2.4427042 ]
[ 0.0992484 ]
[ 0.59122431]]
1 次训练之后,损失:2.37311
1001 次训练之后,损失:0.587702
2001 次训练之后,损失:0.00187977
3001 次训练之后,损失:0.000224713
4001 次训练之后,损失:0.000245593
5001 次训练之后,损失:0.000837345
6001 次训练之后,损失:0.000561878
7001 次训练之后,损失:0.000521504
8001 次训练之后,损失:0.000369141
9001 次训练之后,损失:2.88023e-05
[[-0.40749896 0.74481744 -1.35231423 -1.57555723 1.5161525 0.38725093]
[ 0.84865922 -2.07912779 -0.41053897 -0.21082011 -0.0567192 -0.69210052]]
[[ 0.36143586]
[ 0.34388798]
[ 0.79891819]
[-1.57640576]
[-0.86542428]
[-0.51558757]]
tf.nn.relu
relu(
features,
name=None
)
Defined in tensorflow/python/ops/gen_nn_ops.py.
See the guides: Layers (contrib) > Higher level ops for building neural network layers, Neural Network > Activation Functions
Computes rectified linear: max(features, 0)
TF随笔-7的更多相关文章
- TF随笔-13
import tensorflow as tf a=tf.constant(5) b=tf.constant(3) res1=tf.divide(a,b) res2=tf.div(a,b) with ...
- TF随笔-11
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import tensorflow as tf my_var=tf.Variable(0.) step=t ...
- TF随笔-10
#!/usr/bin/env python# -*- coding: utf-8 -*-import tensorflow as tf x = tf.constant(2)y = tf.constan ...
- TF随笔-9
计算累加 #!/usr/bin/env python2 # -*- coding: utf-8 -*-"""Created on Mon Jul 24 08:25:41 ...
- TF随笔-8
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Jul 10 09:35:04 201 ...
- tf随笔-6
import tensorflow as tfx=tf.constant([-0.2,0.5,43.98,-23.1,26.58])y=tf.clip_by_value(x,1e-10,1.0)ses ...
- tf随笔-5
# -*- coding: utf-8 -*-import tensorflow as tfw1=tf.Variable(tf.random_normal([2,6],stddev=1))w2=tf. ...
- TF随笔-4
>>> import tensorflow as tf>>> a=tf.constant([[1,2],[3,4]])>>> b=tf.const ...
- TF随笔-3
>>> import tensorflow as tf>>> node1 = tf.constant(3.0, dtype=tf.float32)>>& ...
随机推荐
- 20145303刘俊谦 《Java程序设计》实验四 实验报告
实验要求 完成实验.撰写实验报告,实验报告以博客方式发表在博客园,注意实验报告重点是运行结果,遇到的问题(工具查找,安装,使用,程序的编辑,调试,运行等).解决办法(空洞的方法如"查网络&q ...
- 20145310《Java程序设计》第4次实验报告
20145310<Java程序设计>第4次实验报告 实验内容 搭建Android环境 运行Android 修改代码并输出自己的学号 实验步骤 搭建Android环境 安装Android S ...
- 20145312《Java程序设计》课程总结
20145312<Java程序设计>课程总结 每周读书笔记链接汇总 20145312<Java程序设计>第一周学习总结 20145312<Java程序设计>第二周学 ...
- GSM900TCP/UDP连接
TCP发送:AT+CIPSTART="TCP","122.0.114.244",1001返回:OK CONNECT OK 发送: AT+CIPSEND > ...
- CSS控制滚动条的样式
到今天(2018年10月25日)为止, 这还是chrome上的一个实验性特性: ::-webkit-scrollbar{width:4px;height:4px;} ::-webkit-scrollb ...
- JavaScript内部原理系列-执行上下文(Execution Context)
概要 本文将向大家介绍ECMAScript的执行上下文以及相关的可执行代码类型. 定义 每当控制器到达ECMAScript可执行代码的时候,控制器就进入了一个执行上下文.执行上下文(简称:EC)是个抽 ...
- 聚类效果评测-Fmeasure和Accuracy及其Matlab实现
聚类结果的好坏,有很多种指标,其中F-Measue即F值是常用的一种,其中包括precision(查准率或者准确率)和recall(查全率或者召回率). F-Measue是信息检索中常用的评价标准. ...
- unity调用Android百度地图
由于个人是Android小白,在这个配置上面被折磨了很久,因此写下这篇文章 工具:eclipse + unity5.6.1 首先去百度地图开发者平台下载你需要的资源,我只需要显示地图和定位,这个时候你 ...
- linux正则表达式回忆记录
好久没用linux grep相关正则表达式,现在简单记录下. grep简介 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来.通常grep有三种版本grep.egr ...
- 11.深入理解读写锁ReentrantReadWriteLock
protected final int tryAcquireShared(int unused) { /* * Walkthrough: * 1. If write lock held by anot ...