http://codeforces.com/contest/489/problem/D

很显然,我们只需要找对于每个点能到达的深度为3的点的路径的数量,那么对于一个深度为3的点,如果有a种方式到达,那么有方案数(a-1+1)*(a-1)/2

可是我用dfs找路径就tle了QAQ

于是orz别人的代码,,,,是暴力。。。。。。。。。。。。。。。。。。。。。。。。直接两重循环orz

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
const int N=3005;
struct dat { int to, next; }e[N*10];
int cnt, vis[N], c[N], n, m, ihead[N];
void add(int u, int v) { e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; }
void bfs(int x, int dep) {
rdm(x, i) {
int y=e[i].to;
rdm(y, j) {
int z=e[j].to;
if(x==z) continue;
++c[z];
}
}
}
ll ans;
int main() {
read(n); read(m);
for1(i, 1, m) { int u=getint(), v=getint(); add(u, v); }
for1(i, 1, n) {
for1(j, 1, n) vis[j]=0, c[j]=0;
bfs(i, 1);
//for1(j, 1, n) cout << c[j] << ' '; cout << endl;
for1(j, 1, n) if(c[j]>=2) {
--c[j];
ans+=(ll)(c[j]+1)*c[j]/2;
}
}
printf("%I64d\n", ans);
return 0;
}

  


Tomash keeps wandering off and getting lost while he is walking along the streets of Berland. It's no surprise! In his home town, for any pair of intersections there is exactly one way to walk from one intersection to the other one. The capital of Berland is very different!

Tomash has noticed that even simple cases of ambiguity confuse him. So, when he sees a group of four distinct intersections a, b, c and d, such that there are two paths from a to c — one through b and the other one through d, he calls the group a "damn rhombus". Note that pairs (a, b), (b, c), (a, d), (d, c) should be directly connected by the roads. Schematically, a damn rhombus is shown on the figure below:

Other roads between any of the intersections don't make the rhombus any more appealing to Tomash, so the four intersections remain a "damn rhombus" for him.

Given that the capital of Berland has n intersections and m roads and all roads are unidirectional and are known in advance, find the number of "damn rhombi" in the city.

When rhombi are compared, the order of intersections b and d doesn't matter.

Input

The first line of the input contains a pair of integers n, m (1 ≤ n ≤ 3000, 0 ≤ m ≤ 30000) — the number of intersections and roads, respectively. Next m lines list the roads, one per line. Each of the roads is given by a pair of integers ai, bi (1 ≤ ai, bi ≤ n;ai ≠ bi) — the number of the intersection it goes out from and the number of the intersection it leads to. Between a pair of intersections there is at most one road in each of the two directions.

It is not guaranteed that you can get from any intersection to any other one.

Output

Print the required number of "damn rhombi".

Sample test(s)
input
5 4
1 2
2 3
1 4
4 3
output
1
input
4 12
1 2
1 3
1 4
2 1
2 3
2 4
3 1
3 2
3 4
4 1
4 2
4 3
output
12

【cf489】D. Unbearable Controversy of Being(暴力)的更多相关文章

  1. Codeforces Round #277.5 (Div. 2)-D. Unbearable Controversy of Being

    http://codeforces.com/problemset/problem/489/D D. Unbearable Controversy of Being time limit per tes ...

  2. CodeForces 489D Unbearable Controversy of Being (搜索)

    Unbearable Controversy of Being 题目链接: http://acm.hust.edu.cn/vjudge/contest/121332#problem/B Descrip ...

  3. CodeForces 489D Unbearable Controversy of Being (不知咋分类 思维题吧)

    D. Unbearable Controversy of Being time limit per test 1 second memory limit per test 256 megabytes ...

  4. Codeforces Round #277.5 (Div. 2)D Unbearable Controversy of Being (暴力)

    这道题我临场想到了枚举菱形的起点和终点,然后每次枚举起点指向的点,每个指向的点再枚举它指向的点看有没有能到终点的,有一条就把起点到终点的路径个数加1,最后ans+=C(路径总数,2).每两个点都这么弄 ...

  5. CodeForces 489D Unbearable Controversy of Being

    题意: 给出一个n个节点m条边的有向图,求如图所示的菱形的个数. 这四个节点必须直接相邻,菱形之间不区分节点b.d的个数. 分析: 我们枚举每个a和c,然后求出所有满足a邻接t且t邻接c的节点的个数记 ...

  6. [CF489D]Unbearable Controversy of Being

    题目大意:求有向图中这种图的数量 从分层图来考虑,这是一个层数为3的图 枚举第一个点能到达的所有点,对他们进行BFS求第三层的点(假装它是BFS其实直接枚举效果一样) 代码: #include< ...

  7. 【Codeforces 489D】Unbearable Controversy of Being

    [链接] 我是链接,点我呀:) [题意] 让你找到(a,b,c,d)的个数 这4个点之间有4条边有向边 (a,b)(b,c) (a,d)(d,c) 即有两条从a到b的路径,且这两条路径分别经过b和d到 ...

  8. Codeforces Round #277.5 (Div. 2)

    题目链接:http://codeforces.com/contest/489 A:SwapSort In this problem your goal is to sort an array cons ...

  9. Codeforces Round #277.5 (Div. 2)-D

    题意:求该死的菱形数目.直接枚举两端的点.平均意义每一个点连接20条边,用邻接表暴力计算中间节点数目,那么中间节点任选两个与两端可组成的菱形数目有r*(r-1)/2. 代码: #include< ...

随机推荐

  1. Js 的test方法

    Js 的test()方法 test() 方法用于检测一个字符串是否匹配某个模式. 定义和用法test() 方法用于检测一个字符串是否匹配某个模式. 如果字符串中有匹配的值返回 true ,否则返回 f ...

  2. Asp.Net MVC4开发二: Entity Framework在Asp.Net MVC4中的应用

    ORM作为一种数据库訪问机制已广泛地应用于各种项目其中,在.Net开发中,应用比較广泛的ORM框架大致有以下几个: 官方支持的有:Linq to SQL.Entity Framework.三方的有:N ...

  3. OpenERP Web开发

    转自:http://blog.csdn.net/mackz/article/details/22581517 在7和8下测试均可. 1.相关库/框架 主要:jQuery(使用1.8.3,如果使用新版本 ...

  4. 怎样线程安全地遍历List:Vector、CopyOnWriteArrayList

    遍历List的多种方式 在讲怎样线程安全地遍历List之前,先看看通常我们遍历一个List会採用哪些方式. 方式一: for(int i = 0; i < list.size(); i++) { ...

  5. ThreadPoolExecutor中策略的选择与工作队列的选择(java线程池)

    工作原理 1.线程池刚创建时,里面没有一个线程.任务队列是作为参数传进来的.不过,就算队列里面有任务,线程池也不会马上执行它们. 2.当调用 execute() 方法添加一个任务时,线程池会做如下判断 ...

  6. C#实现分片上传文件

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.IO ...

  7. C#指南,重温基础,展望远方!(8)C#数组

    数组是一种数据结构,其中包含许多通过计算索引访问的变量. 数组中的变量(亦称为数组的元素)均为同一种类型,我们将这种类型称为数组的元素类型. 数组类型是引用类型,声明数组变量只是为引用数组实例预留空间 ...

  8. JEECG与帆软报表集成

    将FineReport 集成到自己的web项目中,生成报表,可以方便快捷的和自己的项目融合在一起.简化了利用poi的导出遇到的问题. 1.首先在FR中建立好一个模板      例如:我的这张模板是连接 ...

  9. unity, 两个动画同时播

    法一,animationLayer. 处于不同animationLayer中的状态可以同时运行,即其中的动画可以同时播放. 所以通常一个角色至少需要用两个animationLayer,一个layer用 ...

  10. Redis(十七):批量操作Pipeline

    大多数情况下,我们都会通过请求-相应机制去操作redis.只用这种模式的一般的步骤是,先获得jedis实例,然后通过jedis的get/put方法与redis交互.由于redis是单线程的,下一次请求 ...