k近邻法( k-nearnest neighbor)
基本思想:
给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类
距离度量:
特征空间中两个实例点的距离是两个实例点相似程度的反映,一般常用欧氏距离,更一般的有行内公式\(L_p\)或者Minkowski距离
\]
当\(p=1\)时,为曼哈顿距离,\(L_1(x_i,x_j)=\sum_{l=1}{n}|x_i{(l)}-x_j^{(l)}|\)
当\(p=2\)时,为欧式距离,\(L_2(x_i,x_j)=(\sum|x_i{(l)}-x_j{(l)}|2){\frac{1}{2}}\)
当\(p=\infty\)时,它是各个坐标距离的最大值,\(L_\infty(x_i,x_j)=max_l|x_i{(l)}-x_j{(l)}|\)
机器学习实战第二章代码
import numpy as np
def classify0(inx,dataSet,labels,k):
datasize=dataSet.shape[0]
diffmat=np.tile(inx,(datasize,1))-dataSet
sqdismat=diffmat**2
sqdist=sqdismat.sum(axis=1)
dist=sqdist**0.5
sortdistpos=dist.argsort()
labelscount=np.array([0,0,0,0])
for i in range(k):
votelabels=labels[sortdistpos[i]]
labelscount[votelabels]+=1
returnresult=labelscount.argsort()
return returnresult[-1]
def dataload(filename):
file=open(filename)
ar=file.readlines()
num=len(ar)
returnMat=np.zeros((num,3))
returnLabels=[]
index=0
for line in ar:
line=line.strip()
linelist=line.split('\t')
returnMat[index,:]=linelist[0:3]
returnLabels.append(int(linelist[-1]))
index+=1
return returnMat,returnLabels
def autoNorm(dataSet):
minvals=dataSet.min(0)
maxvals=dataSet.max(0)
ranges=maxvals-minvals
normDataSet=np.zeros(np.shape(dataSet))
m=dataSet.shape[0]
normDataSet=dataSet-np.tile(minvals,(m,1))
normDataSet=normDataSet/np.tile(ranges,(m,1))
return normDataSet
DataMat,DataLabels=dataload('datingTestSet2.txt')
normDataMat=autoNorm(DataMat)
ratio=0.1
tep=normDataMat.shape[0]
testnum=int(tep*ratio)
print(tep,testnum)
errorcount=0
for i in range(testnum):
result=classify0(normDataMat[i,:],normDataMat[testnum:tep,:],DataLabels[testnum:tep],3)
if(result!=DataLabels[i]):
errorcount+=1
print(i," the test result is ",result,",the real result is ",DataLabels[i])
print(errorcount)
print("the error ratio is ",errorcount*1.0/testnum)
k近邻法( k-nearnest neighbor)的更多相关文章
- K近邻法(K-Nearest Neighbor,KNN)
KNN是一种基本分类与回归方法,本篇只总结分类问题中的KNN. 输入:样本的特征向量,对应于特征空间中的点 输出:样本的类别,可取多类 算法思想:给定一个样本类别已知的训练数据集,对于新样本,根据其K ...
- 学习笔记——k近邻法
对新的输入实例,在训练数据集中找到与该实例最邻近的\(k\)个实例,这\(k\)个实例的多数属于某个类,就把该输入实例分给这个类. \(k\) 近邻法(\(k\)-nearest neighbor, ...
- k近邻法(kNN)
<统计学习方法>(第二版)第3章 3 分类问题中的k近邻法 k近邻法不具有显式的学习过程. 3.1 算法(k近邻法) 根据给定的距离度量,在训练集\(T\)中找出与\(x\)最邻近的\(k ...
- k近邻法
k近邻法(k nearest neighbor algorithm,k-NN)是机器学习中最基本的分类算法,在训练数据集中找到k个最近邻的实例,类别由这k个近邻中占最多的实例的类别来决定,当k=1时, ...
- 《统计学习方法(李航)》讲义 第03章 k近邻法
k 近邻法(k-nearest neighbor,k-NN) 是一种基本分类与回归方法.本书只讨论分类问题中的k近邻法.k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类 ...
- K近邻法(KNN)原理小结
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...
- scikit-learn K近邻法类库使用小结
在K近邻法(KNN)原理小结这篇文章,我们讨论了KNN的原理和优缺点,这里我们就从实践出发,对scikit-learn 中KNN相关的类库使用做一个小结.主要关注于类库调参时的一个经验总结. 1. s ...
- 机器学习PR:k近邻法分类
k近邻法是一种基本分类与回归方法.本章只讨论k近邻分类,回归方法将在随后专题中进行. 它可以进行多类分类,分类时根据在样本集合中其k个最近邻点的类别,通过多数表决等方式进行预测,因此不具有显式的学习过 ...
- 统计学习方法(三)——K近邻法
/*先把标题给写了.这样就能经常提醒自己*/ 1. k近邻算法 k临近算法的过程,即对一个新的样本,找到特征空间中与其最近的k个样本,这k个样本多数属于某个类,就把这个新的样本也归为这个类. 算法 ...
- 机器学习中 K近邻法(knn)与k-means的区别
简介 K近邻法(knn)是一种基本的分类与回归方法.k-means是一种简单而有效的聚类方法.虽然两者用途不同.解决的问题不同,但是在算法上有很多相似性,于是将二者放在一起,这样能够更好地对比二者的异 ...
随机推荐
- Jquery15 插件
学习要点: 1.插件概述 2.验证插件 3.自动完成插件 4.自定义插件 插件(Plugin)也成为 jQuery 扩展(Extension),是一种遵循一定规范的应用程序接口编写出来的程序.目前 j ...
- RS232引脚,RS485引脚
1.RS232引脚 2.RS485引脚
- COJS:1829. [Tyvj 1728]普通平衡树
★★★ 输入文件:phs.in 输出文件:phs.out 简单对比 时间限制:1 s 内存限制:128 MB [题目描述] 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需 ...
- terminal配置
阅读目录 前言 使用 tmux 复用控制台窗口 在命令行中快速移动光标 在命令行中快速删除文本 快速查看和搜索历史命令 快速引用和修饰历史命令 录制屏幕并转换为 gif 动画图片 总结 回到顶部 前言 ...
- this 的理解
function foo(num){ console.log("foo:",+num); this.count++}foo.count =0for (var i=0; i<1 ...
- windows批量删除ip
cmd下输入如下命令第一步:netsh -c int ip dump >c:\ip.txt在C盘根目录看到一个ip.txt的文件,内容为当前网卡的设置信息,为了能更直观的看清楚IP的设置信息. ...
- LeetCode——merge-two-sorted-lists
Question Merge two sorted linked lists and return it as a new list. The new list should be made by s ...
- html-常用块级及行级标签
1.常见块级标签 <h1></h1>......<h6></h6>:标题标签 h标签:标题标签,自动加粗,h1最大,h6最小 例:(前后隔一行) ...
- Java单链表反转 详细过程
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/guyuealian/article/details/51119499 Java单链表反转 Java实 ...
- AtCoder Regular Contest 078D
两边bfs,先一边找到从1到n的路径并记录下来,然后挨个标记,最后一边bfs找1能到达的点,比较一下就行了 #include<map> #include<set> #inclu ...