让你求$2004^x$所有因子之和,因子之和函数是积性函数$\sigma(n)=\sum_{d|n}d=\prod_{i=0}^{m}(\sum_{j=0}^{k_i}{P_i^{j}})$可用二项式定理证明,然后2004是给定的固定数,然后该怎么求就怎么求

/** @Date    : 2017-09-08 18:56:21
* @FileName: HDU 1452 欧拉定理.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const LL mod = 29; LL fpow(LL a, LL n)
{
LL res = 1;
while(n)
{
if(n & 1)
res = a * res % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
int main()
{
//SUM factor = Sum(1->s)Sum(0->k)P[i]^k) 各个素因子各次和的乘积
LL n;
while(cin >> n && n)
{
LL INV2 = fpow(2, 27);
LL INV166 = fpow(166, 27);
LL ans = (((fpow(3, n + 1)-1) * INV2 % mod) * ((fpow(167, n + 1)-1) * INV166 % mod) * (fpow(2, 2 * n + 1)-1)) % mod;
printf("%lld\n", ans);
}
return 0;
}

HDU 1452 欧拉定理的更多相关文章

  1. HDU 1452 Happy 2004 (逆元+快速幂+积性函数)

    G - Happy 2004 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Subm ...

  2. HDU 4704 欧拉定理

    题目看了很久没看懂 就是给你数n,一种函数S(k),S(k)代表把数n拆成k个数的不同方案数,注意如n=3,S(2)是算2种的,最后让你求S(1~n)的和模1e9+7,n<=1e100000.那 ...

  3. HDU 1452 (约数和+乘法逆元)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...

  4. HDU 1452

    http://acm.hdu.edu.cn/showproblem.php?pid=1452 原来真心没见过这种题,不会做,非常帅 gcd(a,b)==1 && s(a,b)==s(a ...

  5. hdu 2462(欧拉定理+高精度快速幂模)

    The Luckiest number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  6. hdu 1452 Happy 2004 膜拜这推导过程

    Happy 2004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. HDU 1452 Happy 2004(因子和的积性函数)

    题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...

  8. hdu 1452 Happy 2004

    因子和: 的因子是1,2,3,6; 6的因子和是 s(6)=1+2+3+6=12; 的因子是1,2,4,5,10,20; 20的因子和是 s(20)=1+2+4+5+10+20=42; 的因子是1,2 ...

  9. Hdu 1452 Happy 2004(除数和函数,快速幂乘(模),乘法逆元)

    Problem Description Considera positive integer X,and let S be the sum of all positive integer diviso ...

随机推荐

  1. 欢迎来怼-----Beta冲刺贡献分数分配结果

    队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文

  2. 0302IT行业虽吃香,能完全享受这块“香"的也很难

    面对现今严峻的就业形势,越来越多的人希望通过职业技能培训或者学历提升来提高自己的综合技能以便能够顺利地应聘到自己理想中的工作. 在2014年十大最热门行业和职业排行榜中IT行业最吃香.在十大行业里,I ...

  3. 性能测试工具Loadrunner使用经验小结(原创更新版)

    1. 引言 1.1. 简介 loadrunner是一种预测系统行为和性能的负载测试工具,它可以轻松创建虚拟用户.创建真实的负载.定位性能问题.重复测试保证系统的高性能 globa-100的注册码:AE ...

  4. 【数据库_Mysql】JAVA-数据库Date格式在前台JSP页面的获取

    问题: 数据库保存的为date格式的日期 在前台JSP页面显示的为一串数字1487897     解决办法: 数据库表中字段对应的实体对象属性的get方法上添加一行代码 页面即可正常显示      

  5. 3.7 TCP拥塞控制

    3.7 TCP拥塞控制 在3.5.5流量控制中有,接收方通过维护一个rwnd来控制流量,本节中考虑三个问题: 第一,  一个TCP发送方如何限制它向其他连接发送流量的速率. 第二,  一个TCP发送方 ...

  6. [FJWC2018]全排列 DP

    题面 题面 题解 (表示第一段文字导致我在考场上没看懂题--因为我以为这个定义是定义在整个排列上的,所以相似 = 相同.结果其实是可以应用在一个区间上--) 首先我们发现,2个区间相似,其实就是离散化 ...

  7. [NOI2016]优秀的拆分 后缀数组

    题面:洛谷 题解: 因为对于原串的每个长度不一定等于len的拆分而言,如果合法,它将只会被对应的子串统计贡献. 所以子串这个限制相当于是没有的. 所以我们只需要对于每个位置i求出f[i]表示以i为开头 ...

  8. TechDay公开课实录:PaddlePaddle车牌识别实战和心得

    车牌识别作为一种常见的图像识别的应用场景,已经是一个非常成熟的业务了,在传统的车牌识别中,可以使用字符分割+字符识别的方式来进行车牌识别,而深度学习兴起后,出现了很多端到端的车牌识别模型,不用分割字符 ...

  9. 【BZOJ3437】小P的牧场(动态规划,斜率优化)

    [BZOJ3437]小P的牧场(动态规划,斜率优化) 题面 BZOJ 题解 考虑暴力\(dp\),设\(f[i]\)表示强制在\(i\)处建立控制站的并控制\([1..i]\)的最小代价. 很显然,枚 ...

  10. x64 win64编译环境下ADO链接Access数据库的问题解决

    原文链接地址:https://blog.csdn.net/HW140701/article/details/71077579 Win32编译环境下,用ADO数据库连接Access数据库一般都不会报错, ...