题意:N*M个格点,K个位置会有敌人.每行每列都有一门炮,能打掉这一行(列)上所有的敌人.每门炮都有其使用价值.总花费是所有使用炮的权值的乘积.求最小的总花费.

若每门炮的权值都是1,就是求最小点覆盖的问题,参考:http://poj.org/problem?id=3041

将行视作X部,列视作Y部,敌人(i,j)视作连接点i和点N+j的边,要求一个点集合,使其能覆盖所有的边,且权值之积最小,即求最小点权覆盖.与求最大权独立集一样,也是用网络流求解.

这里处理积的方法是,将权值取对数,则log(a*b) = log(a) + log(b),转化为了加法运算.

建图步骤:建立源点s与汇点t.从源点s向X部的点建边,从Y部的点向汇点t建边,容量为其权值取对数.对敌人(i,j),由i向j+N建容量为正无穷的边.

跑出最大流即为其最小点权覆盖的值,最后pow计算出实际花费.

*其实带权的二分图,用网络流求最小点权覆盖与求最大独立集还是运用了二分图中的思想.二分图中,|最大独立集| = N - |最小点权覆盖| = N - |最大匹配|.

而在用网络流求解时,|最大流| = |最小割| = |最小点权覆盖|, |最大权独立集| = |总权值| - |最小点权覆盖| = |总权置| - |最大流|

#include<iostream>
#include<cstring>
#include<stdio.h>
#include<algorithm>
#include<string>
#include<cmath>
using namespace std;
const double INF = 100000.0;
const int MAXN=3010;//点数的最大值
const int MAXM=400010;//边数的最大值
#define captype double struct SAP_MaxFlow{
struct Edge{
int from,to,next;
captype cap;
}edges[MAXM];
int tot,head[MAXN];
int gap[MAXN];
int dis[MAXN];
int cur[MAXN];
int pre[MAXN]; void init(){
tot=0;
memset(head,-1,sizeof(head));
}
void AddEdge(int u,int v,captype c,captype rc=0){
edges[tot] = (Edge){u,v,head[u],c}; head[u]=tot++;
edges[tot] = (Edge){v,u,head[v],rc}; head[v]=tot++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0;
int u=sNode;
while(dis[sNode]<n){
if(u==eNode){
captype Min=INF ;
int inser;
for(int i=pre[u]; i!=-1; i=pre[edges[i^1].to])
if(Min>edges[i].cap){
Min=edges[i].cap;
inser=i;
}
for(int i=pre[u]; i!=-1; i=pre[edges[i^1].to]){
edges[i].cap-=Min;
edges[i^1].cap+=Min;
}
ans+=Min;
u=edges[inser^1].to;
continue;
}
bool flag = false;
int v;
for(int i=cur[u]; i!=-1; i=edges[i].next){
v=edges[i].to;
if(edges[i].cap>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
int Mind= n;
for(int i=head[u]; i!=-1; i=edges[i].next)
if(edges[i].cap>0 && Mind>dis[edges[i].to]){
Mind=dis[edges[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans;
dis[u]=Mind+1;
gap[dis[u]]++;
if(u!=sNode) u=edges[pre[u]^1].to; //退一条边
}
return ans;
}
}F; int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int T; scanf("%d", &T);
double cap;
int u,v,tmp;
while(T--){
F.init();
int n,m,k; scanf("%d %d %d",&n, &m,&k);
int s = 0, t = n+m+1;
for(int i=1;i<=n;++i){
scanf("%lf", &cap);
F.AddEdge(s,i,log(cap));
}
for(int i=1;i<=m;++i){
scanf("%lf", &cap);
F.AddEdge(i+n,t,log(cap));
}
while(k--){
scanf("%d %d",&u,&v);
F.AddEdge(u,v+n,INF);
}
double res = exp(F.maxFlow_sap(s,t,t+1));
printf("%.4lf\n",res);
}
return 0;
}

POJ - 3308 Paratroopers (最小点权覆盖)的更多相关文章

  1. poj3308 Paratroopers --- 最小点权覆盖-&gt;最小割

    题目是一个非常明显的二分图带权匹配模型, 加入源点到nx建边,ny到汇点建边,(nx.ny)=inf建边.求最小割既得最小点权覆盖. 在本题中因为求的是乘积,所以先所有取log转换为加法,最后再乘方回 ...

  2. POJ 3308 Paratroopers(最小割EK(邻接表&矩阵))

    Description It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the ...

  3. zoj 2874 &amp; poj 3308 Paratroopers (最小割)

    意甲冠军: 一m*n该网络的规模格.详细地点称为伞兵着陆(行和列). 现在,在一排(或列) 安装激光枪,激光枪可以杀死线(或塔)所有伞兵.在第一i安装一排 费用是Ri.在第i列安装的费用是Ci. 要安 ...

  4. POJ 3308 Paratroopers(最小点权覆盖)(对数乘转加)

    http://poj.org/problem?id=3308 r*c的地图 每一个大炮可以消灭一行一列的敌人 安装消灭第i行的大炮花费是ri 安装消灭第j行的大炮花费是ci 已知敌人坐标,同时消灭所有 ...

  5. POJ 3308 Paratroopers(最大流最小割の最小点权覆盖)

    Description It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the ...

  6. poj 3308 Paratroopers(二分图最小点权覆盖)

    Paratroopers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8954   Accepted: 2702 Desc ...

  7. POJ 3308 Paratroopers (对数转换+最小点权覆盖)

    题意 敌人侵略r*c的地图.为了消灭敌人,可以在某一行或者某一列安置超级大炮.每一个大炮可以瞬间消灭这一行(或者列)的敌人.安装消灭第i行的大炮消费是ri.安装消灭第j行的大炮消费是ci现在有n个敌人 ...

  8. poj 3308(最小点权覆盖、最小割)

    题目链接:http://poj.org/problem?id=3308 思路:裸的最小点权覆盖,建立超级源点和超级汇点,将源点与行相连,容量为这行消灭敌人的代价,将列与汇点相连,容量为这列消灭敌人的代 ...

  9. poj 2125 Destroying The Graph (最小点权覆盖)

    Destroying The Graph http://poj.org/problem?id=2125 Time Limit: 2000MS   Memory Limit: 65536K       ...

随机推荐

  1. PHP的只是结构图

  2. Laravel5.1 搭建博客 --构建标签

    博客的每篇文章都是需要有标签的,它与文章也是多对多的关系 这篇笔记也是记录了实现标签的步骤逻辑. 在我们之前的笔记中创建了Tag的控制器和路由了 所以这篇笔记不在重复 1 创建模型与迁移文件 迁移文件 ...

  3. String、StringBuffer与StringBuilder区别

    1.三者在执行速度方面的比较:StringBuilder >  StringBuffer  >  String 2.String <(StringBuffer,StringBuild ...

  4. Maven编译失败,提示No compiler is provided in this enviroment. Perhaps you are running on a JRE rathen a JDK ?

    用maven对项目进行构建时,提示No compiler is provided in this enviroment. Perhaps you are running on a JRE rathen ...

  5. phpcms替换类列表页,内容页,主页

    phpcms替换类列表页,内容页,主页   利用phpcms制作企业站,首先要将静态的企业主页替换成后台可编辑的动态主页. 在phpcms/install_package/phpcms/templat ...

  6. WEB安全番外第三篇--关于XXE

    一.什么是XXE 1.XML实体简介 (1)在一段时间中,XML都是WEB信息传输的主要方法,时至今日XML在WEB中作为前后台之间传递数据的结构,依然发挥着重要的作用.在XML中有一种结构叫做实体: ...

  7. 【黑金原创教程】【TimeQuest】【第四章】内部延迟与其他

    声明:本文为黑金动力社区(http://www.heijin.org)原创教程,如需转载请注明出处,谢谢! 黑金动力社区2013年原创教程连载计划: http://www.cnblogs.com/al ...

  8. 微信小程序-云开发(手记)

    微信小程序-云开发(手记) 1.创建data.json文件 注意以下几点要求: 入门示例: init方法的env:默认环境配置,传入字符串形式的环境 ID(理解为数据库)可以指定所有服务的默认环境(意 ...

  9. 2018-2019-1 20165330 《信息安全系统设计基础》第六周课上测试ch02&课下作业

    课上测试 测试-3-ch02 任务详情 编写一个程序 "week0203学号.c",运行下面代码: 1 short int v = -学号后四位 2 unsigned short ...

  10. 【MongoDB】从入门到精通mongdb系列学习宝典,想学mongodb小伙伴请进来

    最近一段时间在学习MongoDB,在学习过程中总共编写了四十余篇博客.从mongodb软件下载到分片集群的搭建. 从理论讲解到实例练习.现在把所有博客的内容做个简单目录,方便阅读的小伙伴查询. 一. ...