[抄题]:

In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum.

Each subarray will be of size k, and we want to maximize the sum of all 3*k entries.

Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.

Example:

Input: [1,2,1,2,6,7,5,1], 2
Output: [0, 3, 5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.

[暴力解法]:

时间分析:

空间分析:

[优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

note中已经提示了length,就只需要考虑k k&length的关系就了

把“前i项”初始化为“第i项”,方便直接做差

for (int i = 1; i <= n; i++) {
sums[i] = sums[i - 1] + nums[i - 1];
}

[思维问题]:

不知道为什么要用DP:每次都保存之前一组的状态,然后一个个向前更新和比价。

求一组固定为k长度的数组时可用。

//总和=本组和+之前组的和=本组最后之和-本组第一之和+之前的(从j - k开始的)dp求和值
int curSum = sums[j] - sums[j - k] + dp[i - 1][j - k];

[英文数据结构或算法,为什么不用别的数据结构或算法]:

dp数组里存储了结果,可以通过不断输入index来把结果取出来:

int index = n;
for (int i = 2; i >= 0; i--) {
res[i] = pos[i + 1][index];
System.out.println("index = " +index);
System.out.println("res[i] = pos[i + 1][index] = " +res[i]); index = res[i];
System.out.println("index = " +index);
System.out.println("----------------"); }

[一句话思路]:

按照第123组来操作,

 总和=本组和+之前所有组的和

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

  1. 序列型dp所有的有关数组、有关二维数组都要增加1个单位,调用的时候也要+1,因为第一位拿来初始化了。不初始化就是默认为0

[二刷]:

  1. 发现把第0位给去掉了 不知道为何:
[1,2,1,2,6,7,5,1]
2 i = 1
i - 1 = 0
nums[i - 1] = 1
sum[i - 1] = 0
sum[i - 1] = 1
---------------
i = 2
i - 1 = 1
nums[i - 1] = 2
sum[i - 1] = 0
sum[i - 1] = 2
---------------
i = 3
i - 1 = 2
nums[i - 1] = 1
sum[i - 1] = 0
sum[i - 1] = 1
---------------
i = 4
i - 1 = 3
nums[i - 1] = 2
sum[i - 1] = 0
sum[i - 1] = 2
---------------
i = 5
i - 1 = 4
nums[i - 1] = 6
sum[i - 1] = 0
sum[i - 1] = 6
---------------
i = 6
i - 1 = 5
nums[i - 1] = 7
sum[i - 1] = 0
sum[i - 1] = 7
---------------
i = 7
i - 1 = 6
nums[i - 1] = 5
sum[i - 1] = 0
sum[i - 1] = 5
---------------
i = 8
i - 1 = 7
nums[i - 1] = 1
sum[i - 1] = 0
sum[i - 1] = 1
---------------

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

dp是存储一组状态的,可以拿来调用

[复杂度]:Time complexity: O(n) Space complexity: O(n)

[算法思想:迭代/递归/分治/贪心]:

[关键模板化代码]:

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

[是否头一次写此类driver funcion的代码] :

class Solution {
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
//ini: res[3], pos[4][n + 1], dp[4][n + 1]
int n = nums.length;
int[] res = new int[3];
int[] sum = new int[n + 1];
int[][] pos = new int[4][n + 1];
int[][] dp = new int[4][n + 1]; //cc
if (nums == null || nums.length < 3 * k) return res; //ini:sum
for (int i = 1; i <= n; i++) {
int j = i - 1;
System.out.println("i = "+i);
System.out.println("i - 1 = "+j);
System.out.println("nums[i - 1] = "+nums[i - 1]);
System.out.println("sum[i - 1] = "+sum[i - 1]); sum[i - 1] = sum[i - 1] + nums[i - 1]; System.out.println("sum[i - 1] = "+sum[i - 1]);
System.out.println("---------------");
} for (int i = 1; i <= 3; i++) {
for (int j = k * i; j <= n; j++) {
int curSum = sum[j] - sum[j - k] + dp[i - 1][j - k];
if (curSum > dp[i][j - 1]) {
dp[i][j] = curSum;
pos[i][j] = j - k;
}else {
dp[i][j] = dp[i][j - 1];
pos[i][j] = pos[i][j - 1];
}
}
} //retrieve the answer
int index = n;
for (int i = 2; i >= 0; i--) {
//
res[i] = pos[i + 1][index];
index = res[i];
}
//return
return res;
}
}

689. Maximum Sum of 3 Non-Overlapping Subarrays三个不重合数组的求和最大值的更多相关文章

  1. [leetcode]689. Maximum Sum of 3 Non-Overlapping Subarrays三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  2. 689. Maximum Sum of 3 Non-Overlapping Subarrays

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  3. LeetCode 689. Maximum Sum of 3 Non-Overlapping Subarrays

    原题链接在这里:https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/ 题目: In a given arr ...

  4. [LeetCode] 689. Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  5. 【leetcode】689. Maximum Sum of 3 Non-Overlapping Subarrays

    题目如下: In a given array nums of positive integers, find three non-overlapping subarrays with maximum ...

  6. 【LeetCode】689. Maximum Sum of 3 Non-Overlapping Subarrays 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/maximum- ...

  7. [LeetCode] Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  8. [Swift]LeetCode689. 三个无重叠子数组的最大和 | Maximum Sum of 3 Non-Overlapping Subarrays

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  9. [Swift]LeetCode1031. 两个非重叠子数组的最大和 | Maximum Sum of Two Non-Overlapping Subarrays

    Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping ...

随机推荐

  1. 军哥LNMP优化

    http://bbs.vpser.net/thread-8914-1-1.html http://www.zxsdw.com/index.php/archives/881/ 修改/usr/local/ ...

  2. python 怎么和命令行交互

    http://www.cyberciti.biz/faq/python-run-external-command-and-get-output/ http://stackoverflow.com/qu ...

  3. 封装与继承(PHP学习)

    什么是封装? 答:封装时不知道内部构造,对外部只展现功能的这种行为.例如:收音机,你不知道收音机内部的构造,但是你知道收音机是能用来听广播的. 在PHP中,封装是,不对外公布,属性和方法,这些属性和方 ...

  4. Java-Runoob:Java Character 类

    ylbtech-Java-Runoob:Java Character 类 1.返回顶部 1. Java Character 类 Character 类用于对单个字符进行操作. Character 类在 ...

  5. ORA-01146: cannot start online backup - file 1 is already in backup ORA-01110: data file 1: 'C:\ORACLE\ORADATA\ORCL8\SYSTEM01.DBF'

    问题: Error: [1146] ORA-01146: cannot start online backup - file 1 is already in backup ORA-01110: dat ...

  6. OpenCV for Python常用命令

      读取图像首先要导入OpenCV包 import cv2 OpenCV目前支持读取bmp.jpg.png.tiff等常用格式. //读取图片 img2 = cv2.imread('out-0022. ...

  7. Oracle ASM操作管理

    查看ASM磁盘情况 SQL> select group_number,disk_number,mount_status,header_status,mode_status,state,failg ...

  8. toString()和toLocaleString()的区别

    在数字转换成字符串的时候,并没有感觉这两个方法有什么区别,如下: 1 2 3 4 5 6 7 8 var e=123     e.toString() "123"   e.toLo ...

  9. Install MongoDB Community Edition on Ubuntu

    Install MongoDB > Install MongoDB Community Edition > Install MongoDB Community Edition on Lin ...

  10. 解决windows上安装TortoiseSVN后不能使用命令行问题

    一般我们安装TortoiseSVN的时候都是一路next安装好之后就右键开始使用.但是有时候我们需要在windows的命令窗口下执行SVN命令.这时候我们就会发现svn help之后显示没svn这个命 ...