Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5378   Accepted: 2601

Description

There is a square wall which is made of n*n small square bricks. Some bricks are white while some bricks are yellow. Bob is a painter and he wants to paint all the bricks yellow. But there is something wrong with Bob's brush. Once he uses this brush to paint brick (i, j), the bricks at (i, j), (i-1, j), (i+1, j), (i, j-1) and (i, j+1) all change their color. Your task is to find the minimum number of bricks Bob should paint in order to make all the bricks yellow. 

Input

The first line contains a single integer t (1 <= t <= 20) that indicates the number of test cases. Then follow the t cases. Each test case begins with a line contains an integer n (1 <= n <= 15), representing the size of wall. The next n lines represent the original wall. Each line contains n characters. The j-th character of the i-th line figures out the color of brick at position (i, j). We use a 'w' to express a white brick while a 'y' to express a yellow brick.

Output

For each case, output a line contains the minimum number of bricks Bob should paint. If Bob can't paint all the bricks yellow, print 'inf'.

Sample Input

2
3
yyy
yyy
yyy
5
wwwww
wwwww
wwwww
wwwww
wwwww

Sample Output

  0

15

题解:

   构造矩阵高斯消元后可以得到一组解,但是题目中要求的是求出最小染色次数。所以要对其中不确定的方案进行枚举。

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
int T,N,ANS;
int a[][];
bool gauss(){
int now=;
for(int i=;i<=N*N;i++){
int to=now;
while(to<=N*N&&a[to][i]==) to++;
if(to>N*N) continue;
if(to!=now){
for(int j=;j<=N*N+;j++) swap(a[to][j],a[now][j]);
}
for(int j=;j<=N*N;j++){
if(j!=now&&a[j][i]){
for(int k=;k<=N*N+;k++){
a[j][k]^=a[i][k];
}
}
}
now++;
}
for(int i=now;i<=N*N;i++)
if(a[i][N*N+]!=) return false;
return true;
} int v[],cnt;
void dfs(int x){
if(cnt>=ANS) return ;//已经比目前的答案大了,没有必要再搜
if(x==){
ANS=min(cnt,ANS);
return ;
}
if(a[x][x]!=){
int num=a[x][N*N+];//num表示第x块砖染色不染色
for(int i=x+;i<=N*N;i++){
if(a[x][i]!=) num=num^v[i];//已经枚举过的x+1~N*N中某块砖如果可以对x产生影响且已染色,就让num改变一次
}
v[x]=num;
if(num==) cnt++;
dfs(x-);
if(num==) cnt--;
}
else{//枚举按或不按两种情况
v[x]=; dfs(x-);
v[x]=; cnt++; dfs(x-); cnt--;
}
} int main(){
scanf("%d",&T);
while(T--){
memset(a,,sizeof(a));
scanf("%d",&N);
for(int i=;i<=N*N;i++){
a[i][i]=;
if(i%N!=) a[i][i-]=;
if(i%N!=) a[i][i+]=;
if(i>=N+) a[i][i-N]=;
if(i<=N*(N-)) a[i][i+N]=;
}
for(int i=;i<=N;i++){
char s[];
scanf("%s",s+);
for(int j=;j<=N;j++){
if(s[j]=='w') a[(i-)*N+j][N*N+]=;
}
}
if(gauss()==false){
puts("inf");
continue;
}
ANS=<<;
dfs(N*N);
printf("%d\n",ANS);
}
return ;
}

Painter's Problem的更多相关文章

  1. poj 1681 Painter's Problem

    Painter's Problem 题意:给一个n*n(1 <= n <= 15)具有初始颜色(颜色只有yellow&white两种,即01矩阵)的square染色,每次对一个方格 ...

  2. Painter's Problem poj1681 高斯消元法

    Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4420   Accepted: 2143 ...

  3. POJ 1681 Painter's Problem 【高斯消元 二进制枚举】

    任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total ...

  4. [POJ1681]Painter's Problem(高斯消元,异或方程组,状压枚举)

    题目链接:http://poj.org/problem?id=1681 题意:还是翻格子的题,但是这里有可能出现自由变元,这时候枚举一下就行..(其实这题直接状压枚举就行) /* ━━━━━┒ギリギリ ...

  5. OpenJudge 2813 画家问题 / Poj 1681 Painter's Problem

    1.链接地址: http://bailian.openjudge.cn/practice/2813 http://poj.org/problem?id=1681 2.题目: 总时间限制: 1000ms ...

  6. Painter's Problem (高斯消元)

    There is a square wall which is made of n*n small square bricks. Some bricks are white while some br ...

  7. POJ 1681 Painter's Problem(高斯消元+枚举自由变元)

    http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是 ...

  8. POJ 1681 Painter's Problem (高斯消元)

    题目链接 题意:有一面墙每个格子有黄白两种颜色,刷墙每次刷一格会将上下左右中五个格子变色,求最少的刷方法使得所有的格子都变成yellow. 题解:通过打表我们可以得知4*4的一共有4个自由变元,那么我 ...

  9. POJ 1681 Painter's Problem (高斯消元 枚举自由变元求最小的步数)

    题目链接 题意: 一个n*n 的木板 ,每个格子 都 可以 染成 白色和黄色,( 一旦我们对也个格子染色 ,他的上下左右 都将改变颜色): 给定一个初始状态 , 求将 所有的 格子 染成黄色 最少需要 ...

随机推荐

  1. KVM虚拟机添加硬盘

    1,创建硬盘 qemu-img create -f raw /opt/GlusterFS1_data.img 30G 硬盘名称为GlusterFS1_data.img 大小为30G 2,编辑虚拟机配置 ...

  2. nodejs(三)上之express

    express 简介 Express 是一个简洁而灵活的 node.js Web应用框架, 提供了一系列强大特性帮助你创建各种 Web 应用,和丰富的 HTTP 工具. 使用 Express 可以快速 ...

  3. good blog

    https://blog.csdn.net/fgf00/article/details/52793739

  4. Zipline Risk and Performance Metrics

    Risk and Performance Metrics 风险和性能指标 The risk and performance metrics are summarizing values calcula ...

  5. C++之贪吃蛇

    #include<iostream> #include<cstdio> #include<cstdlib> #include<ctime> #inclu ...

  6. window7修改hosts文件

    以管理员身份登录系统 ,修改 C:\Windows\System32\drivers\etc\hosts文件, 在最下面加入类似 192.168.80.10 master192.168.80.11 s ...

  7. 如何缩减手游app安装包的大小?

    包体过大对手游的影响更是诟病已久,有具体数据证明,游戏包体越大,在游戏运营推广过程中游戏用户的转化率就越低:反之,游戏包体越小,游戏用户的下载转化率就越高(如下图),所有的手机app.游戏在大版本更新 ...

  8. mysql 复合查询语句

    INSERT INTO runwa(rshottime,rmoney,renamecount) VALUES (CURDATE(),(select SUM(MONEY) from income whe ...

  9. nsq小试牛刀-0.3.0 API变更

    NSQ是由知名短链接服务商bitly用Go语言开发的实时消息处理系统,具有高性能.高可靠.无视单点故障等优点,是一个非常不错的新兴的消息队列解决方案. nsg易于配置和部署,所有参考都通过命令行指定, ...

  10. Eclipse集成SVN

    安装Subversion1.82(SVN)插件 简介    :SVN是团队开发的代码管理工具,它使我们得以进行多人在同一平台之下的团队开发. 解决问题:Eclipse下的的SVN插件安装. 学到    ...