以前用java写MR程序总不习惯写单元测试,就是查错也只是在小规模数据上跑一下程序。昨天工作时,遇到一个bug,查了好久也查出来。估计是业务逻辑上的错误。后来没办法,只好写了个单元测试,一步步跟踪,瞬间找到问题所在。所以说,工作中还是要勤快些。

 import static org.junit.Assert.assertEquals;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mrunit.mapreduce.MapDriver;
import org.apache.hadoop.mrunit.mapreduce.MapReduceDriver;
import org.apache.hadoop.mrunit.mapreduce.ReduceDriver;
import org.apache.hadoop.mrunit.types.Pair;
import org.junit.Before;
import org.junit.Test;
import com.wanda.predict.GenerateCustomerNatureFeature.NatureFeatureMappper;
import com.wanda.predict.GenerateCustomerNatureFeature.NatureReducer;
import com.wanda.predict.pojo.Settings; /**
* MapReduce 单元测试的模板 , 依赖于junit环境(junit.jar), mrunit.jar , mockito.jar
*
*/
public class MapperReducerUnitTest {
// 一些设置,与正常的mr程序一样,不过这里主要是加载一些信息。性能优化之类的就不要在单元测试里设置了。
Configuration conf = new Configuration();
//Map.class 的测试驱动类
MapDriver<LongWritable, Text, Text, Text> mapDriver;
//Reduce.class 的测试驱动类
ReduceDriver<Text, Text, Text, Text> reduceDriver;
//Map.calss 、 Reduce.class转接到一起的流程测试驱动
MapReduceDriver<LongWritable, Text, Text, Text, Text, Text> mapReduceDriver; @Before
public void setUp() { //测试mapreduce
NatureFeatureMappper mapper = new NatureFeatureMappper();
NatureReducer reducer = new NatureReducer();
//添加要测试的map类
mapDriver = MapDriver.newMapDriver(mapper);
//添加要测试的reduce类
reduceDriver = ReduceDriver.newReduceDriver(reducer);
//添加map类和reduce类
mapReduceDriver = MapReduceDriver.newMapReduceDriver(mapper, reducer); //测试配置参数
conf.setInt(Settings.TestDataSize.getName(), 1);
conf.setInt(Settings.TrainDataSize.getName(), 6);
//driver之间是独立的,谁用到谁就设置conf
reduceDriver.setConfiguration(conf);
mapReduceDriver.setConfiguration(conf);
} @Test
public void testMapper() throws IOException {
mapDriver.withInput(new LongWritable(), new Text("map的输入"));
mapDriver.withOutput(new Text("期望的key"), new Text("期望的value")); //打印实际结果
List<Pair<Text , Text>> result = mapDriver.run();
for(Pair<Text , Text> kv : result){
System.out.println("mapper : " + kv.getFirst());
System.out.println("mapper : " + kv.getSecond());
}
//进行case测试,对比输入输出结果
mapDriver.runTest();
} @Test
public void testReducer() throws IOException {
List<Text> values = new ArrayList<Text>();
values.add(new Text("输入"));
reduceDriver.withInput(new Text("输入"), values);
reduceDriver.withOutput(new Text("期望的输出"), new Text("期望的输出"));
reduceDriver.runTest();
} @Test
public void testMapperReducer() throws IOException {
mapReduceDriver.withInput(new LongWritable(), new Text("输入"));
mapReduceDriver.withOutput(new Text("期望的输出"), new Text("期望的输出"));
//打印实际结果
List<Pair<Text, Text>> list = mapReduceDriver.run();
System.out.println("mapreducedriver size:" + list.size());
for(Pair<Text , Text> lst : list){
System.out.println(lst.getFirst());
System.out.println(lst.getSecond());
}
//进行case测试,对比输入输出结果
mapReduceDriver.runTest();
} @Test
public void testMapperCount() throws IOException {
mapDriver.withInput(new LongWritable(), new Text("输入"));
mapDriver.withOutput(new Text("期望的输出"), new Text("期望的输出"));
mapDriver.runTest();
//判断 map中的counter值是否与期望的相同
assertEquals("Expected 1 counter increment", 1, mapDriver.getCounters().findCounter("data", "suc").getValue());
}
}

MapReduce Unit Test的更多相关文章

  1. MapReduce和Spark写入Hbase多表总结

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 大家都知道用mapreduce或者spark写入已知的hbase中的表时,直接在mapreduc ...

  2. mapReduce编程之Recommender System

    1 协同过滤算法 协同过滤算法是现在推荐系统的一种常用算法.分为user-CF和item-CF. 本文的电影推荐系统使用的是item-CF,主要是由于用户数远远大于电影数,构建矩阵的代价更小:另外,电 ...

  3. Hadoop官方文档翻译——MapReduce Tutorial

    MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapRe ...

  4. Hadoop 学习笔记3 Develping MapReduce

    小笔记: Mavon是一种项目管理工具,通过xml配置来设置项目信息. Mavon POM(project of model). Steps: 1. set up and configure the ...

  5. mapReduce编程之google pageRank

    1 pagerank算法介绍 1.1 pagerank的假设 数量假设:每个网页都会给它的链接网页投票,假设这个网页有n个链接,则该网页给每个链接平分投1/n票. 质量假设:一个网页的pagerank ...

  6. hadoop权威指南 chapter2 MapReduce

    MapReduce MapReduce is a programming model for data processing. The model is simple, yet not too sim ...

  7. Hadoop权威指南:MapReduce应用开发

    Hadoop权威指南:MapReduce应用开发 [TOC] 一般流程 编写map函数和reduce函数 编写驱动程序运行作业 用于配置的API Hadoop中的组件是通过Hadoop自己的配置API ...

  8. Hadoop Mapreduce 参数 (二)

    MergeManagerImpl 类 内存参数计算 maxInMemCopyUse 位于构造函数中 final float maxInMemCopyUse = jobConf.getFloat(MRJ ...

  9. MapReduce C++ Library

    MapReduce C++ Library for single-machine, multicore applications Distributed and scalable computing ...

随机推荐

  1. java基础知识小小结

    java基础知识小总结 在一个独立的原始程序里,只能有一个 public 类,却可以有许多 non-public 类.此外,若是在一个 Java 程序中没有一个类是 public,那么该 Java 程 ...

  2. 清除信号量队列导致zabbix自动关闭

    前几天在海外UCloud机器上部署了一套zabbix proxy和zabbix agentd,可是第二天一大早就收到邮件说zabbix_proxy挂掉了,上去查一下发现两台机器中的一台的proxy和a ...

  3. linux下面bin,sbin不理解的查阅

    在一下的文件中得到答案, 突然想想自己有点傻,自己有代码,为什么不自己查看一下代码呢 http://blog.csdn.net/ithomer/article/details/9839957

  4. UVa 11178:Morley’s Theorem(两射线交点)

    Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...

  5. 搭建 Docker-Registry 私有仓库

    官方已经提供了很多版本的 Linux 镜像,直接从官方仓库(Public Repositories)下载就可以了.如果考虑到安全性和速度,我们可能会想在自己局域网里架设一个私有仓库(Private R ...

  6. 使用 Estimator 构建卷积神经网络

    来源于:https://tensorflow.google.cn/tutorials/estimators/cnn 强烈建议前往学习 tf.layers 模块提供一个可用于轻松构建神经网络的高级 AP ...

  7. 编程之美 set 6 寻找最近点对

    这道题在算法课上当做例题讲过, 当时的印象也比较深 另有一道近似算法的题也在算法课上讲过, 并且印象更深, 复习的时候完全没管, 以为志在必得, 结果真考了那道近似算法, 我却没能打出来 为避免阴沟翻 ...

  8. ios 的EditBox点击空白处不隐藏的解决方案

    原因:参数少了前缀CC 解决方案:修改 cocos/platform/ios/CCEAGLView-ios.mm 中的 handleTouchesAfterKeyboardShow -(void) h ...

  9. NSUserDefaults设置bool值重启后bool只设置丢失问题

    本文转载至 http://blog.csdn.net/cerastes/article/details/38036875   NSUserDefaultsbool同步synchronize无效 今天使 ...

  10. Docker修改时区

    简介 docker容器打日志时间滞后8小时 方法 启动时修改时区 Docker修改默认时区 已启动的容器修改时区 进入容器docker exec -i -t [CONTAINNER] /bin/bas ...