1. 最大公约数(Greatest Common Divisor(GCD))

1.1 基本概念

最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。

1.2 算法

辗转相除法

辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。

例如,求(319,377):

∵ 319÷377=0(余319)

∴(319,377)=(377,319);

∵ 377÷319=1(余58)

∴(377,319)=(319,58);

∵ 319÷58=5(余29)

∴ (319,58)=(58,29);

∵ 58÷29=2(余0)

∴ (58,29)= 29;

∴ (319,377)=29。

可以写成右边的格式。

用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。

2. 最小公倍数(Least Common Multiple(LCM))

2.1 基本概念

两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数。整数a,b的最小公倍数记为[a,b],同样的,a,b,c的最小公倍数记为[a,b,c],多个整数的最小公倍数也有同样的记号。

与最小公倍数相对应的概念是最大公约数,a,b的最大公约数记为(a,b)。关于最小公倍数与最大公约数,我们有这样的定理:(a,b)[a,b]=ab(a,b均为整数)

2.2 算法

公式法

由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。即(a,b)×[a,b]=a×b。所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。

Java语言实现求最大公约数(GCD)和最小公倍数(LCM)

  • 程序一
package com.echo;

import java.util.Scanner;

public class GCDLCM {
// 最大公约数
public static int get_gcd(int n1, int n2) {
int gcd = 0;
if (n1 < n2) {// 交换n1、n2的值
n1 = n1 + n2;
n2 = n1 - n2;
n1 = n1 - n2;
} if (n1 % n2 == 0) {
gcd = n2;
} while (n1 % n2 > 0) {
n1 = n1 % n2; if (n1 < n2) {
n1 = n1 + n2;
n2 = n1 - n2;
n1 = n1 - n2;
} if (n1 % n2 == 0) {
gcd = n2;
}
}
return gcd; } // 最小公倍数
public static int get_lcm(int n1, int n2) {
return n1 * n2 / get_gcd(n1, n2);
} public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.print("请输入第一个整数:");
int n1 = input.nextInt();
System.out.print("请输入第二个整数:");
int n2 = input.nextInt();
System.out.println("(" + n1 + "," + n2 + ")" + "=" + get_gcd(n1, n2));
System.out.println("[" + n1 + "," + n2 + "]" + "=" + get_lcm(n1, n2));
}
}
  • 程序二
package com.echo;

import java.util.Scanner;

public class GCDLCM {
// 最大公约数
public static int get_gcd(int a, int b) {
int max, min;
max = (a > b) ? a : b;
min = (a < b) ? a : b; if (max % min != 0) {
return get_gcd(min, max % min);
} else
return min; } // 最小公倍数
public static int get_lcm(int a, int b) {
return a * b / get_gcd(a, b);
} public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int n1 = input.nextInt();
int n2 = input.nextInt();
System.out.println("(" + n1 + "," + n2 + ")" + "=" + get_gcd(n1, n2));
System.out.println("[" + n1 + "," + n2 + "]" + "=" + get_lcm(n1, n2)); } }

Java求最大公约数和最小公倍数的更多相关文章

  1. JAVA 基础编程练习题6 【程序 6 求最大公约数及最小公倍数】

    6 [程序 6 求最大公约数及最小公倍数] 题目:输入两个正整数 m 和 n,求其最大公约数和最小公倍数. 程序分析:利用辗除法. package cskaoyan; public class csk ...

  2. c语言求最大公约数和最小公倍数

    求最大公约数和最小公倍数 假设有两个数a和b,求a,b的最大公约数和最小公倍数实际上是一个问题,得出这两个数的最大公约数就可以算出它们的最小公倍数. 最小公倍数的公式是 a*b/m m为最大公约数 因 ...

  3. java求最大公约数,和最小公倍数

    import java.util.Scanner; public class Test { public static void main(String[] args) { Scanner sc = ...

  4. Java50道经典习题-程序6 求最大公约数及最小公倍数

    题目:输入两个正整数m和n,求其最大公约数和最小公倍数.分析:用辗转相除法求最大公约数    两个数的最大公约数:设两个数分别为n和m,(n>=m);用定义一个变量i,使用for循环,将i的取值 ...

  5. Problem06 求最大公约数及最小公倍数

    题目:输入两个正整数m和n,求其最大公约数(m,n)和最小公倍数[m,n]. 程序分析:利用辗转相除法. 利用辗除法:用较大数除以较小数,再用出现的余数(第一余数)去除除数, 再用出现的余数(第二余数 ...

  6. 辗转相除法求最大公约数和最小公倍数【gcd】

    要求最小公倍数可先求出最大公约数 设要求两个数a,b的最大公约数 伪代码: int yushu,a,b: while(b不等于0) { yushu=a对b求余 b的值赋给a yushu的值赋给b } ...

  7. java求最大公约数(分解质因数)

    下面是四种用java语言编程实现的求最大公约数的方法: package gcd; import java.util.ArrayList; import java.util.List; public c ...

  8. c语言求最大公约数和最小公倍数(转)

    最大公约数与最小公倍数的求解是很多初学C的人所面临的一道问题.当然这道问题并不难解答,也有很多人已经写过相关的博客,我在此书写此篇博客,一是为了让自己能够夯实基础,另外就是希望能够帮到和我一样的初学者 ...

  9. 求最大公约数和最小公倍数_python

    """写两个函数,分别求两个整数的最大公约数和最小公倍数,调用这两个函数,并输出结果.两个整数由键盘输入.""" ''' 设两个整数u和v, ...

随机推荐

  1. 一个 rsync同步文件脚本

    #/bin/bash cd /root/phone echo "update guanwang phone version" git pull ]; then echo " ...

  2. PHP读取大文本文件并处理数据的思路

    //处理文件 $file = fopen($filename, "r") or exit("Unable to open file!"); $total_lin ...

  3. ubuntu:通过封装验证码类库一步步安装php的gd扩展

    我相信很多人的lamp环境都是直接复制一堆参数安装进去的,这里有可能成功,也有可能失败,如果是新手,估计要碰到各种错误,就算安装成功,也未必知道那些参数是干嘛的,反正装进去能用就行. 我当初开始的时候 ...

  4. Oracle批量操作数据库

    1:批量插入 <insert id="insertBatch" parameterType="Java.util.List" > insert in ...

  5. 【ASP.NET Core】解决“The required antiforgery cookie "xxx" is not present”的错误

    当你在页面上用 form post 内容时,可能会遇到以下异常: The required antiforgery cookie "????????" is not present ...

  6. 学习Yii框架,有哪些比较好的网站

    1.http://www.yiiframework.com/ 2.http://www.kancloud.cn/curder/yii/247741 3.http://www.manks.top/yii ...

  7. R实践 第二篇:创建数据集

    准备数据是数据分析的第一步,由数据构成集合,我们称作数据集,数据集的结构是行列式的,行表示观测,列表示变量.把数据读入到R中,转换为合适的数据结构,能够提高数据分析的效率.在数据分析中,常用的存储数据 ...

  8. Mysql group by,order by,dinstict优化

    1.order by优化 2.group by优化 3.Dinstinct 优化 1.order by优化 实现方式: 1. 根据索引字段排序,利用索引取出的数据已经是排好序的,直接返回给客户端: 2 ...

  9. jmeter 脚本规范

    总结了一下公司正在用 jmeter 脚本规范. 使用 jmeter 进行接口级测试, 随着接口增多以及业务逻辑越来越复杂, 导致 jmeter 脚本的维护会更加困难.针对实际使用中发现的问题进行一些规 ...

  10. vue之render基本书写方法

    Vue 推荐在绝大多数情况下使用 template 来创建你的 HTML.然而在一些场景中,你真的需要 JavaScript 的完全编程的能力,这就是 render 函数,它比 template 更接 ...