题意:给出n,求:

\[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\gcd(i,j)
\]

多组数据,\(n<=4*10^6\)

sol

今天心血来潮再来写一写式子

首先这里求的是无序对而且还不能相等所以说我第一遍样例都没过

那么如果你求出了\(\sum_{i=1}^{n}\sum_{j=1}^{n}\gcd(i,j)\),你就只要把这个答案减去\(\sum_{i=1}^{n}i\)再除以二就可以了。你可以当做是,你求出的那个东西就是一整个矩阵的和,而题目要求的只是正对角线上方的部分,所以减掉对角线上的再除以2就是答案。

接下来开始大力开式子(接下来我们求的是\(\sum_{i=1}^{n}\sum_{j=1}^{n}\gcd(i,j)\))。

\[ans=\sum_{d=1}^{n}d*\sum_{i=1}^{n}\sum_{j=1}^{n}[\gcd(i,j)==d]
\]

\[=\sum_{d=1}^{n}d*\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}[\gcd(i,j)==1]
\]

\[=\sum_{d=1}^{n}d*\sum_{i=1}^{n/d}\mu(i)\lfloor\frac n{id}\rfloor^2
\]

\[=\sum_{T=1}^{n}\lfloor\frac nT\rfloor^2\sum_{d|T}d*\mu(\frac Td)
\]

然后线性筛这个函数

\[h(T)=\sum_{d|T}d*\mu(\frac Td)
\]

求一个前缀和然后分块T

复杂度\(O(n+T\sqrt n)\)

code

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int N = 4000000;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
int pri[N+5],tot,zhi[N+5];
ll low[N+5],h[N+5];
void Mobius()
{
zhi[1]=low[1]=1;h[1]=1;
for (int i=2;i<=N;i++)
{
if (!zhi[i]) low[i]=pri[++tot]=i,h[i]=i-1;
for (int j=1;j<=tot&&i*pri[j]<=N;j++)
{
zhi[i*pri[j]]=1;
if (i%pri[j]==0)
{
low[i*pri[j]]=low[i]*pri[j];
if (low[i]==i)
h[i*pri[j]]=h[i]*pri[j];
else
h[i*pri[j]]=h[i/low[i]]*h[low[i]*pri[j]];
break;
}
low[i*pri[j]]=pri[j];
h[i*pri[j]]=h[i]*h[pri[j]];
}
}
for (int i=1;i<=N;i++)
h[i]+=h[i-1];
}
int main()
{
Mobius();
while (233)
{
int n=gi(),i=1;
if (n==0) break;
ll ans=0;
while (i<=n)
{
int j=n/(n/i);
ans+=(h[j]-h[i-1])*(n/i)*(n/i);
i=j+1;
}
printf("%lld\n",(ans-1ll*(n+1)*n/2)/2);
}
return 0;
}

[UVa11426]最大公约数之和——极限版II的更多相关文章

  1. UVa11426 最大公约数之和(正版)

    题面 求\(\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}gcd(i, j)\) n<=4000000,数据组数T<=100 答案保证在64位带符号整数范围内(long ...

  2. 51nod1188 最大公约数之和 V2

    考虑每一个数对于答案的贡献.复杂度是O(nlogn)的.因为1/1+1/2+1/3+1/4......是logn级别的 //gcd(i,j)=2=>gcd(i/2,j/2)=1=>phi( ...

  3. 51nod 1237 最大公约数之和 V3(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...

  4. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  5. 51 nod 1188 最大公约数之和 V2

    1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...

  6. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  7. 51nod 1040 最大公约数之和 欧拉函数

    1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...

  8. 51nod 1040 最大公约数之和

    给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15   Input 1个数N(N <= ...

  9. 51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3

    1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N ...

随机推荐

  1. python学习:函数的递归调用

    计算阶层   普通方法: -使用循环   #!/usr/bin/python   def factorial(n):     sum = 1     for i in range(1,n+1):   ...

  2. Math.abs(~2018),掌握规律!

    Math.abs(~2018) 这要用到一些计算机的基础知识. Math.abs(x)指的是返回一个数的绝对值,而关键在"~2018",这是取反操作符,故取相反数得结果为-2018 ...

  3. .NET 设计模式的六大原则理论知识

    1. 单一职责原则(SRP)(Single Responsibility Principle)2. 里氏替换原则(LSP)(Liskov Substitution Principle)3. 依赖倒置原 ...

  4. 微信小程序 页面跳转传递数据

    点击view 跳转页面 <view class="album_image" data-album-obj="{{item}}" bindtap=" ...

  5. python入门学习笔记(二)

    6.6替换元素 7.tuple类型 7.1创建tuple 7.2创建单元素tuple    7.3"可变"的tuple 8.条件判断和循环 8.1,if语句   8.2,if... ...

  6. Conemu, Msys2 工具整合,提升windows下控制台工作效率

    与windows cmd相比较git-bash这类的console工具好用很多,但是git-bash的命令和功能相对简单,功能扩展起来不方便,git-bash本身也是基于msys的. 昨天发现使用Ms ...

  7. C++11 左值、右值、右值引用详解

    C++11 左值.右值.右值引用详解 左值.右值 在C++11中所有的值必属于左值.右值两者之一,右值又可以细分为纯右值.将亡值. 在C++11中可以取地址的.有名字的就是左值,反之,不能取地址的.没 ...

  8. node.js简单搭建服务,访问本地站点文件

    1.安装nodejs服务(从官网下载安装),node相当于apache服务器 2.在自己定义的目录下新建服务器文件如 server.js 例如,我在D:\nodeJs下创建了server.js文件 v ...

  9. FFMpeg在Ubuntu上的安装和使用

    在Ubuntu Server上编译FFmpeg FFmpeg是最流行的开源视频转码工具包,在Ubuntu上可以直接通过apt-get安装,但是默认的编码器不提供x264这些non-free的编码器,所 ...

  10. java网络编程(6)——实现一个服务器把小写转大写

    实现一个服务器,通过我们发送的文本数据,然后转回大写放回,实现一个服务端与客户端的交互,用over来作为结束标记,具体代码如下: 客户端: package com.seven.tcp; import ...