种子点的标记没有太搞懂,这个算法的速度还是很快的

// watershed_test20140801.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h" //
// ch9_watershed image
// This is an exact copy of the watershed.cpp demo in the OpenCV ../samples/c directory
//
// Think about using a morphologically eroded forground and background segmented image as the template
// for the watershed algorithm to segment objects by color and edges for collecting
//
/* *************** License:**************************
Oct. 3, 2008
Right to use this code in any way you want without warrenty, support or any guarentee of it working. BOOK: It would be nice if you cited it:
Learning OpenCV: Computer Vision with the OpenCV Library
by Gary Bradski and Adrian Kaehler
Published by O'Reilly Media, October 3, 2008 AVAILABLE AT:
http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
Or: http://oreilly.com/catalog/9780596516130/
ISBN-10: 0596516134 or: ISBN-13: 978-0596516130 OTHER OPENCV SITES:
* The source code is on sourceforge at:
http://sourceforge.net/projects/opencvlibrary/
* The OpenCV wiki page (As of Oct 1, 2008 this is down for changing over servers, but should come back):
http://opencvlibrary.sourceforge.net/
* An active user group is at:
http://tech.groups.yahoo.com/group/OpenCV/
* The minutes of weekly OpenCV development meetings are at:
http://pr.willowgarage.com/wiki/OpenCV
************************************************** */ #include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
using namespace std;
using namespace cv; #pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib") IplImage* marker_mask = 0;
IplImage* markers = 0;
IplImage* img0 = 0, *img = 0, *img_gray = 0, *wshed = 0;
CvPoint prev_pt = {-1,-1}; void on_mouse( int event, int x, int y, int flags, void* param )
{
if( !img )
return; if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )
prev_pt = cvPoint(-1,-1);
else if( event == CV_EVENT_LBUTTONDOWN )
prev_pt = cvPoint(x,y);
else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) )
{
CvPoint pt = cvPoint(x,y);
if( prev_pt.x < 0 )
prev_pt = pt;
cvLine( marker_mask, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
cvLine( img, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
prev_pt = pt;
cvShowImage( "image", img );
}
} int main( int argc, char** argv )
{
cout<<"input image name: "<<endl;
string file;
cin>>file; char* filename = (char *)file.c_str(); CvRNG rng = cvRNG(-1); if( (img0 = cvLoadImage(filename,1)) == 0 )
return 0; printf( "Hot keys: \n"
"\tESC - quit the program\n"
"\tr - restore the original image\n"
"\tw or ENTER - run watershed algorithm\n"
"\t\t(before running it, roughly mark the areas on the image)\n"
"\t (before that, roughly outline several markers on the image)\n" ); cvNamedWindow( "image", 1 );
cvNamedWindow( "watershed transform", 1 ); img = cvCloneImage( img0 );
img_gray = cvCloneImage( img0 );
wshed = cvCloneImage( img0 );
marker_mask = cvCreateImage( cvGetSize(img), 8, 1 );
markers = cvCreateImage( cvGetSize(img), IPL_DEPTH_32S, 1 );
cvCvtColor( img, marker_mask, CV_BGR2GRAY );
cvCvtColor( marker_mask, img_gray, CV_GRAY2BGR ); cvZero( marker_mask );
cvZero( wshed );
cvShowImage( "image", img );
cvShowImage( "watershed transform", wshed );
cvSetMouseCallback( "image", on_mouse, 0 ); for(;;)
{
int c = cvWaitKey(0); if( (char)c == 27 )
break; if( (char)c == 'r' )
{
cvZero( marker_mask );
cvCopy( img0, img );
cvShowImage( "image", img );
} if( (char)c == 'w' || (char)c == '\n' )
{
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* contours = 0;
CvMat* color_tab;
int i, j, comp_count = 0;
//cvSaveImage( "wshed_mask.png", marker_mask );
//marker_mask = cvLoadImage( "wshed_mask.png", 0 );
cvFindContours( marker_mask, storage, &contours, sizeof(CvContour),
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
cvZero( markers );
for( ; contours != 0; contours = contours->h_next, comp_count++ )
{
cvDrawContours( markers, contours, cvScalarAll(comp_count+1),
cvScalarAll(comp_count+1), -1, -1, 8, cvPoint(0,0) );
} color_tab = cvCreateMat( 1, comp_count, CV_8UC3 );
for( i = 0; i < comp_count; i++ )
{
uchar* ptr = color_tab->data.ptr + i*3;
ptr[0] = (uchar)(cvRandInt(&rng)%180 + 50);
ptr[1] = (uchar)(cvRandInt(&rng)%180 + 50);
ptr[2] = (uchar)(cvRandInt(&rng)%180 + 50);
} {
double t = (double)cvGetTickCount();
cvWatershed( img0, markers );
t = (double)cvGetTickCount() - t;
printf( "exec time = %gms\n", t/(cvGetTickFrequency()*1000.) );
} // paint the watershed image
for( i = 0; i < markers->height; i++ )
for( j = 0; j < markers->width; j++ )
{
int idx = CV_IMAGE_ELEM( markers, int, i, j );
uchar* dst = &CV_IMAGE_ELEM( wshed, uchar, i, j*3 );
if( idx == -1 )
dst[0] = dst[1] = dst[2] = (uchar)255;
else if( idx <= 0 || idx > comp_count )
dst[0] = dst[1] = dst[2] = (uchar)0; // should not get here
else
{
uchar* ptr = color_tab->data.ptr + (idx-1)*3;
dst[0] = ptr[0]; dst[1] = ptr[1]; dst[2] = ptr[2];
}
} cvAddWeighted( wshed, 0.5, img_gray, 0.5, 0, wshed );
cvShowImage( "watershed transform", wshed );
cvReleaseMemStorage( &storage );
cvReleaseMat( &color_tab );
}
} return 1;
}

实现效果:

OpenCV 实现分水岭算法的更多相关文章

  1. OpenCV学习(9) 分水岭算法(3)

    本教程我学习一下opencv中分水岭算法的具体实现方式. 原始图像和Mark图像,它们的大小都是32*32,分水岭算法的结果是得到两个连通域的轮廓图. 原始图像:(原始图像必须是3通道图像) Mark ...

  2. OpenCV学习(8) 分水岭算法(2)

        现在我们看看OpenCV中如何使用分水岭算法.     首先我们打开一副图像:    // 打开另一幅图像   cv::Mat    image= cv::imread("../to ...

  3. opencv分水岭算法对图像进行切割

    先看效果 说明 使用分水岭算法对图像进行切割,设置一个标记图像能达到比較好的效果,还能防止过度切割. 1.这里首先对阈值化的二值图像进行腐蚀,去掉小的白色区域,得到图像的前景区域.并对前景区域用255 ...

  4. opencv学习之路(30)、分水岭算法及图像修补

    一.简介 二.分水岭算法 #include "opencv2/opencv.hpp" using namespace cv; void main() { Mat srcImg = ...

  5. OpenCV 学习笔记 04 深度估计与分割——GrabCut算法与分水岭算法

    1 使用普通摄像头进行深度估计 1.1 深度估计原理 这里会用到几何学中的极几何(Epipolar Geometry),它属于立体视觉(stereo vision)几何学,立体视觉是计算机视觉的一个分 ...

  6. 分水岭算法(理论+opencv实现)

    分水岭算法理论 从意思上就知道通过用水来进行分类,学术上说什么基于拓扑结构的形态学...其实就是根据把图像比作一副地貌,然后通过最低点和最高点去分类! 原始的分水岭: 就是上面说的方式,接下来用一幅图 ...

  7. Opencv分水岭算法——watershed自动图像分割用法

    分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特 ...

  8. OpenCV——分水岭算法

    分水岭算法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形 ...

  9. OpenCV学习(7) 分水岭算法(1)

            分水岭算法主要用于图像分段,通常是把一副彩色图像灰度化,然后再求梯度图,最后在梯度图的基础上进行分水岭算法,求得分段图像的边缘线.         下面左边的灰度图,可以描述为右边的地 ...

随机推荐

  1. 在电脑上安装Linux操作系统

    1硬件需求 A 一台电脑 B 一个优盘 2软件需求 A制作优盘启动盘的软件PowerISO BLinux操作系统的镜像文件 3安装PowerISO,并使用PowerISO A安装PowerISO B插 ...

  2. HDFS:NameNode、DataNode、SecondaryNameNode

    可以一句话描述 HDFS:把客户端的大文件存放在很多节点的数据块中. HDFS设计原则: 1,文件以块(block)方式存储: 2,通过副本机制提高可靠度和读取吞吐量: 3,每个区块至少分到三台Dat ...

  3. 【移动开发】Service类onStartCommand()返回值和参数

    Android开发的过程中,每次调用startService(Intent)的时候,都会调用该Service对象的onStartCommand(Intent,int,int)方法,然后在onStart ...

  4. 与音频相关的技术知识点总结(Linux方向的开发)

    几个术语和概念: 1.       关于PCM的 PCM是Pulse code modulation的缩写,它是对波形最直接的编码方式.它在音频中的地位可能和BMP在图片中的地位有点类似吧. Samp ...

  5. iOS中 最新微信支付/最全的微信支付教程详解 韩俊强的博客

    每日更新关注:http://weibo.com/hanjunqiang  新浪微博! 亲们, 首先让我们来看一下微信支付的流程吧. 1. 注册微信开放平台,创建应用获取appid,appSecret, ...

  6. Android初级教程Fragment到Fragment的通信初探

    这里只是给出三个类RightFragment.LeftFragment.MainActivity中的简易代码,至于布局怎么设定,不做赘述. 思路:从碎片一获取与之依托的活动实例,碎片一可以调用活动里面 ...

  7. JQuery实战--可以编辑的表格

    廊坊下雪了,15年的第二场雪,比14的来的稍晚一些,停靠在11教门前的自行车,成了廊坊师范学院最美丽的风景线.还记得以前学习css的时候,就曾经接触过如何编写设计一些表格和表单的样式,例如如何设计表格 ...

  8. Android4.4.2KK竖屏强制更改为横屏的初步简略方案

    点击打开链接 解决方案: 当前是根据当前问题场景即竖屏强制更改为横屏的需求而做的改动,基本是hardcode定义的状态,总共修改有效代码行数5行,如果后续有其他需求或者需要更灵活的配置横屏和竖屏,可以 ...

  9. 看人装X,我就来气,开启极限装X模式

    本文书写,纯属扯淡,请勿观看 4进制比二进制更合理,在01的状态中添加了两种状态,从无到有和从有到无的两种过度状态. 如果非要用数值表示,用概率表示.01作为近代计算机的基础,但终究淘汰,构成下一代计 ...

  10. Deploying Customizations in Oracle E-Business Suite Release 12.2

    DeployingCustomizations in Oracle E-Business Suite Release 12.2 This documentdescribes how to deploy ...