Xiangqi is one of the most popular two-player board games in China. The game represents a battle

between two armies with the goal of capturing the enemy’s “general” piece. In this problem, you are 

given a situation of later stage in the game. Besides, the red side has already “delivered a 

check”. Your work is to check whether the situation is “checkmate”.

Now we introduce some basic rules of Xiangqi. Xiangqi is played on a 10 × 9 board and the pieces 

are placed on the intersections (points). The top left point is (1,1) and the bottom right point is 

(10,9). There are two groups of pieces marked by black or red Chinese characters, belonging to the 

two players separately. During the game, each player in turn moves one piece from the point it 

occupies to another point. No two pieces can occupy the same point at the same time. A piece can be 

moved onto a point occupied by an enemy piece, in which case the enemy piece is“captured” and 

removed from the board. When the general is in danger of being captured by the enemy player on the 

en- emy player’s next move, the enemy player is said to have “delivered a check”. If the general’s 

player can make no move to prevent the general’s capture by next enemy move, the situation is 

called “check-

mate”.

We only use 4 kinds of pieces introducing as follows:

General: the generals can move and capture one point either vertically or horizontally and cannot 

leave the “palace” unless the situation called “flying general” (see the figure above). “Flying 

general” means that one general can “fly” across the board to capture the enemy general if they 

stand on the same line without intervening pieces.



Chariot: the chariots can move and capture vertically and horizontally by any distance, but may not 

jump over intervening pieces



Cannon: the cannons move like the chariots, horizontally and vertically, but capture by jumping 

exactly one piece (whether it is friendly or enemy) over to its target.



Horse: the horses have 8 kinds of jumps to move and capture shown in the left figure. However, if 

there is any pieces lying on a point away from the horse horizontally or vertically it cannot move 

or capture in that direction (see the figure below), which is called “hobbling the

horse’s leg”.



Now you are given a situation only containing a black general, a red general and several red 

chariots, cannons and horses, and the red side has delivered a check. Now it turns to black side’s 

move. Your job is to determine that whether this situation is “checkmate”.



Input



The input contains no more than 40 test cases. For each test case, the first line contains three 

integers representing the number of red pieces N (2 ≤ N ≤ 7) and the position of the black general. 

The following N lines contain details of N red pieces. For each line, there are a char and two 

integers representing the type and position of the piece (type char ‘G’ for general, ‘R’ for 

chariot, ‘H’ for horse and ‘C’ for cannon). We guarantee that the situation is legal and the red 

side has delivered the check.

There is a blank line between two test cases. The input ends by ‘0 0 0’.



Output



For each test case, if the situation is checkmate, output a single word ‘YES’, otherwise output the 

word ‘NO’.



Hint: In the first situation, the black general is checked by chariot and “flying general”. In the 

second situation, the black general can move to (1, 4) or (1, 6) to stop check. See the figure on 

the right.



Sample Input

2 1 4

G 10 5

R 6 4



3 1 5

H  4 5

G 10 5

C 7 5



0 0 0



Sample Output

YES

NO

纯粹逻辑题目

思路:

先判断是否黑将直接能吃掉红将,这样黑方直接就赢了

再让黑将上下左右走,分别判断这样走安不安全

注意有些棋子可能直接能让黑将吃掉,还有越界问题

每种棋子注意判别将军方式,比如车要在同一条直线上,中间不能有棋子

炮的话,和将之间还需要一个棋子

马注意蹩脚马的情况

AC代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <algorithm>

using namespace std;

struct One{
	int r, c;
	char type;
};

One Red[10];

int N, r0, c0, G_NO;
char tab[12][12]; // 棋盘
// 黑将能走的四个方向
const int dir[4][2] = { { -1, 0 }, { 1, 0 }, { 0, -1 }, { 0, 1 } };

// 马的行走方向
const int Hdir[8][4] = {
	{ -1, 2, 0, 2 }, { 1, 2, 0, 2 },
	{ -2, -1, -2, 0 }, { -2, 1, -2, 0 },
	{ -1, -2, 0, -2 }, { 1, -2, 0, -2 },
	{ 2, -1, 2, 0 }, { 2, 1, 2, 0 }
};

inline bool in_black_palace(const int r, const int c)
{
	return r >= 1 && r <= 3 && c >= 4 && c <= 6;
}

int get_range_block(int r1, int c1, int r2, int c2)
{
	int cnt = 0;
	if (r1 != r2 && c1 != c2) return -1;
	if (r1 == r2){
		if (c1 > c2) swap(c1, c2);
		for (int i = c1 + 1; i <= c2 - 1; ++i) {
			if (tab[r1][i] != '\0')
				cnt++;
		}
	}
	else if (c1 == c2){
		if (r1 > r2) swap(r1, r2);
		for (int i = r1 + 1; i <= r2 - 1; ++i) {
			if (tab[i][c1] != '\0') {
				cnt++;
			}
		}
	}
	return cnt;
}

// 四种棋子的将军判别方法
bool G(const int r, const int c, const int x, const int y)
{
	if (c != y) return false;
	return get_range_block(r, c, x, y) == 0;
}

bool R(const int r, const int c, const int x, const int y)
{
	int res = get_range_block(r, c, x, y);
	if (res == -1) return false;
	return res == 0;
}

bool H(const int r, const int c, const int x, const int y)
{
	for (int i = 0; i < 8; ++i) {
		int x1 = x + Hdir[i][0], y1 = y + Hdir[i][1];
		if (x1 == r && y1 == c && get_range_block(x, y, x + Hdir[i][2], y + Hdir[i][3]) == 0)
			return true;
	}
	return false;
}

bool C(const int r, const int c, const int x, const int y){
	int res = get_range_block(r, c, x, y);
	if (res == -1) {
		return false;
	}
	return res == 1;
}

bool check_red_win(const int r, const int c) {
	for (int i = 0; i < N; ++i) if (!(Red[i].r == r && Red[i].c == c)) {
		One & t = Red[i];
		if (t.type == 'G' && G(r, c, t.r, t.c)) return true;
		if (t.type == 'R' && R(r, c, t.r, t.c)) return true;
		if (t.type == 'H' && H(r, c, t.r, t.c)) return true;
		if (t.type == 'C' && C(r, c, t.r, t.c)) return true;
	}
	return false;
}

int main()
{
	//ios::sync_with_stdio(false);
	while ( cin >> N >> r0 >> c0 && (N != 0)) {
		// 记得清空红方棋子和棋盘
		memset(Red, 0, sizeof(Red)), memset(tab, 0, sizeof(tab));
		for (int i = 0; i < N; i++) {
			One t;
			cin >> t.type >> t.r >> t.c;
			if (t.type == 'G') {
				G_NO = i; // 标记黑将
			}
			tab[t.r][t.c] = t.type;
			Red[i] = t;
		}
		// 判断黑将能否直接吃掉红将
		if (G(r0, c0, Red[G_NO].r, Red[G_NO].r)) {
			printf("NO\n");
			continue;
		}
		bool red_win = true;
		// 红将向上下左右分别移动,看是否能逃脱
		for (int i = 0; i < 4; ++i) {
			int r1 = r0 + dir[i][0], c1 = c0 + dir[i][1];
			if (in_black_palace(r1, c1) && !check_red_win(r1, c1)) {
				red_win = false;
				break;
			}
		}
		if (red_win) {
			printf("YES\n");
		}
		else {
			printf("NO\n");
		}
	}
	return 0;
}

Uva - 1589 - Xiangqi的更多相关文章

  1. ●UVa 1589 Xiangqi(模拟)

    ●赘述题意 给出一个中国象棋残局,告诉各个棋子的位置,黑方只有1枚“将”,红方有至少2枚,至多7枚棋子,包含1枚“帅G”,和若干枚“车R”,“马H”,“炮C”.当前为黑方的回合,问黑方的“将”能否在移 ...

  2. 【每日一题】 UVA - 1589 Xiangqi 函数+模拟 wa了两天

    题意:背景就是象棋, 题解:坑点1(wa的第一天):将军可以吃掉相邻的棋子,(然行列也写反了orz) 坑点2(wa的第二天):将军到马要反过来写,边界有误,并且第一次碰到的车才算(写到后来都忘了) # ...

  3. UVA 1589:Xiangqi (模拟 Grade D)

    题目: 象棋,黑棋只有将,红棋有帅车马炮.问是否死将. 思路: 对方将四个方向走一步,看看会不会被吃. 代码: 很难看……WA了很多发,还越界等等. #include <cstdio> # ...

  4. 【UVA】1589 Xiangqi(挖坑待填)

    题目 题目     分析 无力了,noip考完心力憔悴,想随便切道题却码了250line,而且还是错的,知道自己哪里错了,但特殊情况判起来太烦了,唯一选择是重构,我却没有这勇气. 有空再写吧,最近真的 ...

  5. uva 1589 by sixleaves

    坑爹的模拟题目.自己对于这种比较复杂点得模拟题的能力概述还不够,还多加练习.贴别是做得时候一直再想如何检查车中间有没有棋子,炮中间有没有棋子.到网上参考别人的代码才发先这么简单的办法,自己尽然想不到. ...

  6. UVA 1589 象棋

    题意: 给出一个黑方的将, 然后 红方有 2 ~ 7 个棋子, 给出摆放位置,问是否已经把黑将将死, 红方已经将军. 分析: 分情况处理, 车 马 炮, 红将情况跟车是一样的. 建一个数组board保 ...

  7. dir命令只显示文件名

    dir /b 就是ls -f的效果 1057 -- FILE MAPPING_web_archive.7z 2007 多校模拟 - Google Search_web_archive.7z 2083 ...

  8. uva 1354 Mobile Computing ——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5

  9. UVA 10564 Paths through the Hourglass[DP 打印]

    UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...

随机推荐

  1. 求n的阶乘

    import java.util.Scanner; public class J {  public static void main(String args[])  {   //注释:int n=6 ...

  2. C语言程序设计预报作业

    1. 阅读邹欣老师的博客--师生关系,针对文中的几种师生关系谈谈你的看法,你期望的师生关系是什么样的? 答:万物都是变化的,师生关系也一样.小学中学把老师看作春蚕,蜡烛的的比喻到了大学显然行不通了.大 ...

  3. dva-quickstart 与 create-react-app 比较(一)

    最近在学习 React ,  现对 dva-quickstart   与  create-react-app 比较 1. 安装, 两个都需要安装工具包:npm install -g create-re ...

  4. 聪明的搜索算法’ A*算法

    A*算法     是一种启发式的搜索算法. 了解BFS.DFS或者Dijkstra算法的人应该知道.这些算法都是一种向四周盲目式搜索的方法.   启发式搜索:     启发式搜索就是在状态空间中的搜索 ...

  5. ES6(Decorator(修饰器))

    Decorator(修饰器) 1.基本概念 函数用来修改 类 的行为 1.Decorator 是一个函数 2.通过Decorator(修饰器)能修改 类 的行为(扩展 类 的功能)3.Decorato ...

  6. 操作系统内核Hack:(四)内核雏形

    操作系统内核Hack:(四)内核雏形 在本系列的前一篇文章<操作系统内核Hack:(三)BootLoader制作>中,我们制作出了一个两阶段引导BootLoader,并进入了一个内核的空壳 ...

  7. Android开发学习之路--性能优化之布局优化

      Android性能优化方面也有很多文章了,这里就做一个总结,从原理到方法,工具等做一个简单的了解,从而可以慢慢地改变编码风格,从而提高性能. 一.Android系统是如何处理UI组件的更新操作的 ...

  8. 解决HTML外部引用CSS文件不生效问题

    作为一个前端小白,鼓捣了几天前端..今天突然发现我深信不疑的东西,竟然出现了问题..就比如我在css目录下面写了一个css样式文档:style.css.这时里面只有一句话: body { backgr ...

  9. 20160212.CCPP体系详解(0022天)

    程序片段(01):01.二维数组.c 内容概要:二维数组 #include <stdio.h> #include <stdlib.h> //01.关于栈内存开辟数组: // 诀 ...

  10. dubbo安装

    dubbo 管控台可以对注册到 zookeeper 注册中心的服务或服务消费者进行管理,分享牛系列,分享牛专栏,分享牛.但管控台是否正常对 Dubbo 服务没有影响,管控台也不需要高可用,因此可以单节 ...