首先,最大四边形的四个点一定在凸包上

所以先求凸包

有个结论,若是随机数据,凸包包括的点大约是\(\log_2n\)个

然鹅,此题绝对不会这么轻松,若\(O(n^4)\)枚举,只有50分

所以还是要想正解

旋转卡壳是继承上一个点枚举,所以枚举对角线上的两点,通过旋转卡壳找剩余两点

复杂度\(O(n^2)\)

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<bitset>
#include<sstream>
#include<cstdlib>
#define QAQ int
#define TAT long long
#define OwO bool
#define ORZ double
#define F(i,j,n) for(QAQ i=j;i<=n;++i)
#define E(i,j,n) for(QAQ i=j;i>=n;--i)
#define MES(i,j) memset(i,j,sizeof(i))
#define MEC(i,j) memcpy(i,j,sizeof(j)) using namespace std;
const QAQ N=200005;
const ORZ eps=1e-8; QAQ n;
struct Point{
ORZ x,y;
friend Point operator + (Point a,Point b){
Point t;
t.x=a.x+b.x;t.y=a.y+b.y;
return t;
}
friend Point operator - (Point a,Point b){
Point t;
t.x=a.x-b.x;t.y=a.y-b.y;
return t;
}
friend ORZ operator ^ (Point a,Point b){
return a.x*b.y-a.y*b.x;
}
friend ORZ operator * (Point a,Point b){
return a.x*b.x+a.y*b.y;
}
}a[N],s[N];
QAQ top;
ORZ ans; QAQ sign(ORZ x){
return fabs(x)<=eps ? 0 : (x>0 ? 1 : -1);
} ORZ dis(Point i,Point j){
return (i.x-j.x)*(i.x-j.x)+(i.y-j.y)*(i.y-j.y);
} OwO comp(Point i,Point j){
ORZ x=(i-a[1])^(j-a[1]);
return x>0||x==0&&dis(a[1],i)<dis(a[1],j);
} void Graham(){
QAQ k=1;
F(i,2,n) if(a[i].y<a[k].y||(a[i].y==a[k].y&&a[i].x<a[k].x)) k=i;
swap(a[k],a[1]);
sort(a+2,a+n+1,comp);
s[++top]=a[1];s[++top]=a[2];
F(i,3,n){
while(top>=2&&sign((s[top]-s[top-1]) ^ (a[i]-s[top-1]))<=0) top--; //"<=0" 别忘"="
s[++top]=a[i];
}
} ORZ cal(Point i,Point j,Point k,Point l){
return (((k-i)^(j-i))+((l-i)^(k-i)))/2.0;
} ORZ work(){
ORZ ans=0;
s[top+1]=a[1];
F(i,1,top){
QAQ a=i%top+1,b=(i+2)%top+1;
F(j,i+2,top){
while(a%top+1!=j&&(((s[a]-s[i])^(s[j]-s[i])))<(((s[a+1]-s[i])^(s[j]-s[i])))) (a%=top)+=1;
while(b%top+1!=j&&(((s[j]-s[i])^(s[b]-s[i])))<(((s[j]-s[i])^(s[b+1]-s[i])))) (b%=top)+=1;
//注意叉积的前后向量顺序
ans=max(ans,fabs(((s[a]-s[i])^(s[j]-s[i]))+((s[j]-s[i])^(s[b]-s[i]))));
}
}
return ans;
} QAQ main(){
scanf("%d",&n);
F(i,1,n) scanf("%lf%lf",&a[i].x,&a[i].y);
Graham();
printf("%.3lf\n",work());
return 0;
}

[SCOI2007]最大土地面积的更多相关文章

  1. bzoj1069 SCOI2007 最大土地面积

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2560  Solved: 983 Description ...

  2. bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2277  Solved: 853[Submit][Stat ...

  3. BZOJ 1069: [SCOI2007]最大土地面积 [旋转卡壳]

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2978  Solved: 1173[Submit][Sta ...

  4. bzoj1069 [SCOI2007]最大土地面积 旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3767  Solved: 1501[Submit][Sta ...

  5. [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3669  Solved: 1451[Submit][Sta ...

  6. BZOJ 1069: [SCOI2007]最大土地面积(旋转卡壳)

    题目链接~ 1069: [SCOI2007]最大土地面积 思路很简单,极角排序求完凸包后,在凸包上枚举对角线,然后两边分别来两个点旋转卡壳一下,搞定! 不过计算几何的题目就是这样,程序中间的处理还是比 ...

  7. 1069: [SCOI2007]最大土地面积

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2961  Solved: 1162[Submit][Sta ...

  8. [Bzoj1069][Scoi2007]最大土地面积(凸包)(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3629  Solved: 1432[Submit][Sta ...

  9. luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳

    LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...

  10. 【BZOJ】1069: [SCOI2007]最大土地面积(凸包+旋转卡壳)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1069 显然这四个点在凸包上,然后枚举两个点找上下最大的三角形即可. 找三角形表示只想到三分QAQ.. ...

随机推荐

  1. Linux环境JDK安装

    Java的编程离不开jdk,今天本文主要讲下Linux下的JDK安装与配置 1.卸载Linux自带的JDK #检测jdk安装包 [root@localhost ~]# rpm -qa | grep j ...

  2. destoon数据库表解释说明

    ----------------------------- 公司认证:vcompany 实名认证:vtarde ============================================ ...

  3. C#进行CAD二次开发环境配置

    最近被公司分配到了做CAD二次开发.也是初次接触这方面的东西,其实是有些无从下手的感觉.因为公司这边也没有人有时间带我,只能是自己看书,然后再写一些Demo,再结合实际的应用来一点点的学习.废话不多说 ...

  4. python装饰器实现对异常代码出现进行监控

    异常,不应该存在,但是我们有时候会遇到这样的情况,比如我们监控服务器的时候,每一秒去采集一次信息,那么有一秒没有采集到我们想要的信息,但是下一秒采集到了, 而后每次的采集都能采集到,就那么一次采集不到 ...

  5. 史上最全的判断android,ios还是ipad访问,附上多种语言的实现方式

    js判断: (function(a,b){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elain ...

  6. C#动态设置匿名类型对象的属性

    用C#写WPF程序, 实现功能的过程中碰到一个需求: 动态设置对象的属性,属性名称是未知的,在运行时才能确定. 本来这种需求可以用 Dictionary<string, object> 实 ...

  7. 流API--流的映射

    很多时候,将一个流的元素映射到另外一个流很有帮助.映射操作最具代表的就是map()方法.实际编码中,我们会经常用到,所以这里专门整理一篇博客. 考虑如下情景,对于一个包含了姓名,电话,年龄等属性构成的 ...

  8. strlen出错

    1.特别奇怪的错误 $url="https://api.weixin.qq.com/cgi-bin/token?grant_type=client_credential&appid= ...

  9. NodeJs实现他人项目实例

    1.简单实例,参考 https://github.com/alsotang/node-lessons/tree/master/lesson2 2.express一个新项目 ,但出现警告 发现少了nod ...

  10. Git 2.0 更改 push default

    近期更新了git,项目push时会提示这样的信息: warning: push.default 尚未设置,它的默认值在 Git 2.0 已从 'matching' 变更为 'simple'.若要不再显 ...