以最佳的101 layer的ResNet-DUC为基础,添加HDC,实验探究了几种变体:

  • 无扩张卷积(no dilation):对于所有包含扩张卷积,设置r=1r=1
  • 扩张卷积(dilation Conv ):对于所有包含扩张卷积,将2个block和为一组,设置第一个block的r=2r=2,第二个block的r=1r=1
  • Dilation-RF:对于res4bres4b包含了23个blocks,使用的r=2r=2,设置3个block一组,r=1,2,3r=1,2,3.对于最后两个block,设置r=2r=2;对于res5bres5b,包含3个block,使用r=4r=4,设置为r=3,4,5r=3,4,5.
  • Dilation-Bigger:对于res4bres4b模块,设置4个block为一组,设置r=1,2,5,9r=1,2,5,9.最后3个block设置为1,2,51,2,5;对于res5bres5b模块,设置r=5,9,17r=5,9,17

可以看到增加接收野大小会获得较高的精度。如下图所示:

ResNet-DUC-HDC在较大的目标物上表现较好。下图是局部放大:

可以看到HDC有效的消除”gridding”产生的影响。

Deeper Networks: 同样尝试了将ResNet-101切换为ResNet-152,使用ResNet152先跑了10个epoch学习了BN层参数,再固定BN层,跑了20个epochs.结果如下:

ResNet152为基础层的有1%的提升。

Test Set Results: 论文将ResNet101开始的7×77×7卷积拆分为3个3×33×3的卷积,再不带CRF的情况下达到了80.1%mIoU.与其他先进模型相比如下:

模型同时在coarse labels跑了一圈,与同样以deliated convolution为主的DeepLabv2相比,提升了9.7%.

KITTI Road Segmentaiton

KITTI有289的训练图片和290个测试图片。示例如下:

因为数据集有限,为了避免过拟合。论文以100的步长在数据集中裁剪320×320320×320的patch. 使用预训练模型,结果如下:

结果达到了state-of-the-art水平.

PASCAL VOC2012 dataset

先用VOC2012训练集和MS-COCO数据集对ResNet-DUC做预训练。再使用VOC2012做fine-tune。使用的图片大小为512×512512×512。达到了state-of-the-art水平:

可视化结果如下:


Conclusion

论文提出了简单有效的卷积操作改进语义分割系统。使用DUC恢复上采样丢失的信息,使用HDC在解决”gridding”的影响的同时扩大感受野。实验证明我们的框架对各种语义分割任务的有效性。

理解图像分割中的卷积(Understand Convolution for Semantic Segmentation)的更多相关文章

  1. 理解NLP中的卷积神经网络(CNN)

    此篇文章是Denny Britz关于CNN在NLP中应用的理解,他本人也曾在Google Brain项目中参与多项关于NLP的项目. · 翻译不周到的地方请大家见谅. 阅读完本文大概需要7分钟左右的时 ...

  2. [转] 理解NLP中的卷积&&Pooling

    转自:http://blog.csdn.net/malefactor/article/details/51078135 CNN是目前自然语言处理中和RNN并驾齐驱的两种最常见的深度学习模型.图1展示了 ...

  3. 彻底理解数字图像处理中的卷积-以Sobel算子为例

    彻底理解数字图像处理中的卷积-以Sobel算子为例 作者:FreeBlues 修订记录 2016.08.04 初稿完成 概述 卷积在信号处理领域有极其广泛的应用, 也有严格的物理和数学定义. 本文只讨 ...

  4. caffe中全卷积层和全连接层训练参数如何确定

    今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mni ...

  5. [翻译] 扩张卷积 (Dilated Convolution)

    英文原文: Dilated Convolution 简单来说,扩张卷积只是运用卷积到一个指定间隔的输入.按照这个定义,给定我们的输入是一个2维图片,扩张率 k=1 是通常的卷积,k=2 的意思是每个输 ...

  6. [转]CNN 中千奇百怪的卷积方式大汇总

    https://www.leiphone.com/news/201709/AzBc9Sg44fs57hyY.html 推荐另一篇很好的总结:变形卷积核.可分离卷积?卷积神经网络中十大拍案叫绝的操作. ...

  7. CNN中千奇百怪的卷积方式大汇总

    1.原始版本 最早的卷积方式还没有任何骚套路,那就也没什么好说的了. 见下图,原始的conv操作可以看做一个2D版本的无隐层神经网络. 附上一个卷积详细流程: [TensorFlow]tf.nn.co ...

  8. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  9. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

随机推荐

  1. XGBoost算法--学习笔记

    学习背景 最近想要学习和实现一下XGBoost算法,原因是最近对项目有些想法,准备做个回归预测.作为当下比较火的回归预测算法,准备直接套用试试效果. 一.基础知识 (1)泰勒公式 泰勒公式是一个用函数 ...

  2. SOFA 源码分析 — 连接管理器

    前言 RPC 框架需要维护客户端和服务端的连接,通常是一个客户端对应多个服务端,而客户端看到的是接口,并不是服务端的地址,服务端地址对于客户端来讲是透明的. 那么,如何实现这样一个 RPC 框架的网络 ...

  3. php中获取用户登陆的IP地址以及常规处理

    本文为原创,转载请注明!  在我们开发多站点业务网站中,经常需要获取客户端的ip地址来给用户推荐其所在地址的信息的业务,用php获取客户端的ip地址,我们一般用到的PHP内置方法是$_SERVER[' ...

  4. jasperReport Studio java报表设计(详细)

    一.环境搭建 在spring-mvc.xml加入 <!-- jasperReports--><import resource="classpath*:spring-mvc- ...

  5. quick-cocos2d-x与 cocos2d-x的关系

    quick-cocos2d-x(后文简称 quick)与 cocos2d-x 的关系,用一句话概括:quick 是 cocos2d-x 针对 Lua 的豪华套装威力加强版. 那 quick 与 coc ...

  6. python爬虫入门(二)Opener和Requests

    Handler和Opener Handler处理器和自定义Opener opener是urllib2.OpenerDirector的实例,我们之前一直在使用urlopen,它是一个特殊的opener( ...

  7. vh、vw、vmin、vmax 知多少

    介绍一些 CSS3 新增的单位,平时可能用的比较少,但是由于单位的特性,在一些特殊场合会有妙用. vw and vh 1vw 等于1/100的视口宽度 (Viewport Width) 1vh 等于1 ...

  8. Redis数据结构简介

    Redis可以存储键与5种不同数据结构类型之间的映射,这5种数据结构类型分别为STRING(字符串).LIST(列表).SET(集合).HASH(散列)和ZSET(有序集合).有一部分Redis命令对 ...

  9. 前端为什么非要动静分离 说一下CDN托管的意义

    大型Web应用对速度的追求并没有止步于仅仅利用浏览器缓存,因为浏览器缓存始终只是为了提升二次访问的速度,对于首次访问的加速,我们需要从网络层面进行优化,最常见的手段就是CDN(Content Deli ...

  10. 全局唯一ID发号器的几个思路

    标识(ID / Identifier)是无处不在的,生成标识的主体是人,那么它就是一个命名过程,如果是计算机,那么它就是一个生成过程.如何保证分布式系统下,并行生成标识的唯一与标识的命名空间有着密不可 ...