Egg Dropping Puzzle问题的分析
首先,基本问题是这样:You are given two eggs, and access to a 100-storey building. The aim is to find out the highest floor from which an egg will not break when dropped out of a window from that floor.
翻译成中文大概是这样:你得到两个鸡蛋,并进入一个100层楼。目的是找出从地板上掉下来的鸡蛋从地板上掉下来时不会破裂的最高层。
我谷歌了一下这个题目,发现应该是和动态规划相关的问题,应该有优化的过程。
我们可以用w(n,k)来表示,其中n表示鸡蛋的个数,k表示楼需要验证的层数。题目则用(2,100)来表示,假设第一次在第i个楼层扔鸡蛋,如果破碎了,则下一个鸡蛋从(1,i)的范围,所对应的公式为(1,i-1);如果没有碎,则这两个鸡蛋则从(i,100)的范围进行实验,所对应的公式为w(2,100-i)。
其对于的公式为
w(n,k)=1+max{w(n-1,i-1),w(n,k-i)}
其中w(1,1)到w(1,k)=k,w(n,1)=1,w(1,0)=0.
代码如下:
#include<iostream>
#include<stdio.h>
#include<math.h>
#define MAX 200
#define MAXMAX 10000
using namespace std;
int main()
{
int w[MAX][MAX]={};
int n,k;
cin>>n>>k;
for(int i=;i<=k;i++)
{
w[][i]=i;
}
for(int i=;i<=n;i++)
{
w[i][]=;
} int t;
for(int i=;i<=n;i++)
{
for(int j=;j<=k;j++)
{
int the_max=MAXMAX;
for(int x=;x<=j;x++)
{
t=max(w[i-][x-],w[i][j-x]);
if(the_max>t)
{
the_max=t;
}
}
w[i][j]=+the_max; }
} //cout<<w[n][k]<<endl;
for(int j=;j<=k;j++)
{
printf("%4d",j);
}
cout<<endl;
for(int i=;i<=n;i++)
{
printf("%4d",i);
for(int j=;j<=k;j++)
{
printf("%4d",w[i][j]);
}
cout<<endl; }
return ;
}
以w(2,36)为例,运行截图如下:

运行w(2,100)即可得到题目所求。
Egg Dropping Puzzle问题的分析的更多相关文章
- Egg Dropping Puzzle
The Two Egg Problem 曾经是Google的一道经典题. 题意:有一个百层高楼,鸡蛋在\(L\)层及以下扔都不碎,在\(L\)层以上都会碎.现在某人有\(k\)个鸡蛋,问在最坏情况下, ...
- 扔鸡蛋问题具体解释(Egg Dropping Puzzle)
经典的动态规划问题,题设是这种: 假设你有2颗鸡蛋,和一栋36层高的楼,如今你想知道在哪一层楼之下,鸡蛋不会被摔碎,应该怎样用最少的測试次数对于不论什么答案楼层都可以使问题得到解决. 假设你从某一层楼 ...
- 扔鸡蛋问题详解(Egg Dropping Puzzle)
http://blog.csdn.net/joylnwang/article/details/6769160 经典的动态规划问题,题设是这样的:如果你有2颗鸡蛋,和一栋36层高的楼,现在你想知道在哪一 ...
- 动态规划法(六)鸡蛋掉落问题(一)(egg dropping problem)
继续讲故事~~ 这天,丁丁正走在路上,欣赏着路边迷人的城市风景,突然发现前面的大楼前围了一波吃瓜群众.他好奇地凑上前去,想一探究竟,看看到底发生了什么事情. 原来本市的一位小有名气的科学家 ...
- 大数据技术之_16_Scala学习_06_面向对象编程-高级+隐式转换和隐式值
第八章 面向对象编程-高级8.1 静态属性和静态方法8.1.1 静态属性-提出问题8.1.2 基本介绍8.1.3 伴生对象的快速入门8.1.4 伴生对象的小结8.1.5 最佳实践-使用伴生对象解决小孩 ...
- UVA 679 Dropping Balls 由小见大,分析思考 二叉树放小球,开关翻转,小球最终落下叶子编号。
A number of K balls are dropped one by one from the root of a fully binary tree structure FBT. Each ...
- 2 Egg Problem
继续我们的推理问题之旅,今天我们要对付的是一个Google的面试题:Two Egg Problem. 我们开始吧! No.2 Google Interview Puzzle : 2 Egg Prob ...
- 【LeetCode】887. Super Egg Drop 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 参考资料 日期 题目地址:https://leetc ...
- Workload Automation分析及其使用
Workload Automation介绍 Workload Automation是提供一个在设备上运行各种workload的工具,使用Python编写.WA具有良好的框架结构,方便快捷的扩展.包含几 ...
随机推荐
- Android的内存分配与回收
想写一篇关于android的内存分配和回收文章的想法来源于追查一个魅族手机图片滑动卡顿问题,我们想了很多办法还是没有避免他不停的GC,所以就打算详细的看看内存分配和GC的原理,为什么会不断的GC,GC ...
- linux知识汇总
1. 利用Ctrl+Alt+F1到Ctrl+Alt+F6在6个虚拟控制台之间切换,利用Ctrl+Alt+F7切换回图形界面. 2. 使用who命令来判断谁在系统上及其登录方式.id命令 ...
- 【Qt编程】基于Qt的词典开发系列<三>--开始菜单的设计
这篇文章讲讲如何实现开始菜单(或者称为主菜单)的设计.什么是开始菜单呢?我们拿常用的软件来用图例说明,大多数软件的开始菜单在左下角,如下图: 1.window 7的开始菜单 2.有道词典的主菜单 3. ...
- OpenCV特征点提取----Fast特征
1.FAST(featuresfrom accelerated segment test)算法 http://blog.csdn.net/yang_xian521/article/details/74 ...
- Customer Form Issue: Automatic Matching Rule Set Defaults Value AutoRuleSet-1
In this Document Symptoms Changes Cause Solution References APPLIES TO: Oracle Receivables ...
- java自带dom工具使用实例
代码参考自 黄亿华大神的<<1000行代码读懂Spring(一)- 实现一个基本的IoC容器>> 原网页如下 http://my.oschina.net/flashsword/ ...
- Memcached学习笔记 — 第四部分:Memcached Java 客户端-gwhalin(1)-介绍及使用
介绍 Memcached java client是官方推荐的最早的memcached java客户端.最新版本:java_memcached-release_2.6.1. 官方下载地址:http ...
- Java基本数据类型和长度
转自:http://lysongfei.iteye.com/blog/602546 java数据类型 字节 表示范围 byte(字节型) 1 -128-127 short(短整型 ...
- "《算法导论》之‘排序’":线性时间排序
本文参考自一博文与<算法导论>. <算法导论>之前介绍了合并排序.堆排序和快速排序的特点及运行时间.合并排序和堆排序在最坏情况下达到O(nlgn),而快速排序最坏情况下达到O( ...
- Linux - grep的一些进阶选项
[root@www ~]# grep [-A] [-B] [--color=auto] '搜寻字串' filename 选项与参数: -A :后面可加数字,为 after 的意思,除了列出该行外,后续 ...