推荐一篇论文:http://wenku.baidu.com/view/ce5784754a7302768f99391d

我们设xi为第i个志愿者的招募次数,以样例为例,则不难列出如下的线性规划方程:

min{2x1+5x2+2x3}

x1+0+0>=2

x1+x2+0>=3

0+x2+x3>=4

那么,根据论文,这个方程等价于:

max{2x1+3x2+4x3}

x1+x2+0<=2

0+x2+x3<=5

0+0+x3<=2

我们发现,这是一个线性规划方程的基本形式,基本解为{0,0,0}

然后套模板就可以了。

#include <cstdio>

const int N=,M=;
int n,m,x,y,p,id;
double ans,c[N],b[M],a[M][N]; void pvt(int id,int p) {
a[id][p]=/a[id][p],b[id]*=a[id][p];
for(int i=;i<=n;i++) if(i^p) a[id][i]*=a[id][p];
for(int i=;i<=m;i++) if((i^id)&&a[i][p]) {
for(int j=;j<=n;j++) if(j^p) a[i][j]-=a[i][p]*a[id][j];
b[i]-=a[i][p]*b[id],a[i][p]*=-a[id][p];
}
for(int i=;i<=n;i++) if(i^p) c[i]-=c[p]*a[id][i];
ans+=c[p]*b[id],c[p]*=-a[id][p];
}
double sol() {
while() {
for(p=;p<=n;p++) if(c[p]>) break;
if(p==n+) return ans;
double fz=0x3f3f3f3f;
for(int i=;i<=m;i++) if(a[i][p]>&&b[i]/a[i][p]<fz) fz=b[i]/a[i][p],id=i;
if(fz==0x3f3f3f3f) return fz;
pvt(id,p);
}
} int main() {
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%lf",&c[i]);
for(int i=;i<=m;i++) {
scanf("%d%d%lf",&x,&y,&b[i]);
for(int j=x;j<=y;j++) a[i][j]=;
}
printf("%.0f",sol());
return ;
}

单纯形求解线性规划(BZOJ1061)的更多相关文章

  1. matlab学习笔记之求解线性规划问题和二次型问题

    一.线性规划问题 已知目标函数和约束条件均为线性函数,求目标函数的最小值(最优值)问题. 1.求解方式:用linprog函数求解 2.linprog函数使用形式: x=linprog(f,A,b)  ...

  2. matlab 求解线性规划问题

    线性规划 LP(Linear programming,线性规划)是一种优化方法,在优化问题中目标函数和约束函数均为向量变量的线性函数,LP问题可描述为: minf(x):待最小化的目标函数(如果问题本 ...

  3. Python求解线性规划——PuLP使用教程

    简洁是智慧的灵魂,冗长是肤浅的藻饰.--莎士比亚<哈姆雷特> 1 PuLP 库的安装 如果您使用的是 Anaconda[1] 的话(事实上我也更推荐这样做),需要先激活你想要安装的虚拟环境 ...

  4. Lingo求解线性规划案例4——下料问题

    凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 造纸厂接到定单,所需卷纸的宽度和长度如表 卷纸的宽度 长度 5 7 9 10000 30000 20000 工 ...

  5. Lingo求解线性规划案例3——混料问题

    凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/  某糖果厂用原料A.B和C按不向比率混合加工而成甲.乙.丙三种糖果(假设混合加工中不损耗原料).原料A.B.C ...

  6. Lingo求解线性规划案例1——生产计划问题

    凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 说明: Lingo版本:                            某工厂明年根据合同,每个季度末 ...

  7. Lingo求解线性规划案例2——多阶段投资问题

     凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 某公司现有资金30万元可用于投资,5年内有下列方案可供采纳:   1号方案:在年初投资1元,2年后可收回1. ...

  8. 用Lingo求解线性规划问题

    第一步:输入目标条件和约束条件.每行以分号隔开.然后点击工具栏上的Solve按钮,或Lingo菜单下的Solve子菜单. 第二步:检查report中的结果. 默认情况下,Lingo不进行灵敏度分析. ...

  9. MATLAB求解线性规划

随机推荐

  1. Environment.getExternalStorageDirectory()

    Environment.getExternalStorageDirectory()得到的是storage/emulated/0

  2. 关于搭建MyBatis框架(二)

    由于在[关于使用Mybatis的使用说明(一)http://www.cnblogs.com/zdb292034/p/8675766.html]中存在不太完善地方,通过此片文档进行修订: 阅读指南:(1 ...

  3. 进军ABP第一天:ABP理论知识

    1.2.3 领域层领域层就是业务层,是一个项目的核心,所有业务规则都应该在领域层实现. ( 实体(Entity ) 实体代表业务领域的数据和操作,在实践中,通过用来映射成数据库表. ( 仓储(Repo ...

  4. LR之error(一)

    1 录制时频繁卡死的解决方案 添加数据保护 路径:计算机--高级系统设置(环境变量设置的上级窗口)--高级--设置--数据执行保护 更改LR录制设置,将run-time setting的brower改 ...

  5. kubernetes入门(06)kubernetes的核心概念(3)

    一.API 对象 API对象是K8s集群中的管理操作单元.K8s集群系统每支持一项新功能,引入一项新技术,一定会新引入对应的API对象,支持对该功能的管理操作.例如副本集Replica Set对应的A ...

  6. SpringCloud的配置管理:Spring Cloud Config

    演示如何使用ConfigServer提供统一的参数配置服务 ###################################################################一.概 ...

  7. linux下git常用命令

    1 安装: sudo apt-get install git 2 创建一个版本库: 新建一个文件夹,进入这个目录之后 git init 3 创建一个版本: git add 文件名或目录 #表示将当前文 ...

  8. Excel as a Service —— Excel 开发居然可以这么玩

    前言 据不完全统计,全世界使用Excel作为电子表格和数据处理的用户数以十亿计,这不仅得益于它的使用简便,同时还因为它内置了很多强大的函数,结合你的想象力可以编写出各种公式,并可快速根据数据生成图表和 ...

  9. 安装shellinabox-master

    安装shellinabox-master 1 插件介绍:通过web页面管理linux主机(电脑版) a. 安装 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...

  10. spark2.1注册内部函数spark.udf.register("xx", xxx _),运行时抛出异常:Task not serializable

    函数代码: class MySparkJob{ def entry(spark:SparkSession):Unit={ def getInnerRsrp(outer_rsrp: Double, we ...