题意:给定n个数a1,a2····an,依次求出相邻两个数值和,将得到一个新数列,重复上述操作,最后结果将变为一个数,问这个数除以m的余数与那些数无关?

思路:最后观察期规律符合杨辉三角,那么,问题就可以变成判断C(0,n-1),C(1,n-1)。。。。C(n-1,n-1)哪些是m的倍数,所以只需考虑m唯一分解后在C(i,n-1)中的情况

公式:C(k,n)=(n-i+1)*c(i-1,n)/k. 然后利用递推公式检查m的因子,只要(n-i+1)/i是m倍数即可

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <map>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull; int pm[1000],nm[1000];
int cur; void ini(int m) //分解m
{
cur = 0;
memset(pm,0,sizeof(pm));
memset(nm,0,sizeof(nm));
for(int i = 2; i*i <= m ; i ++)
{
if(m % i == 0)
{
pm[cur] = i;
while(m % i == 0)
{
m /= i;
nm[cur]++;
}
cur++;
}
}
if(m > 1)
{
pm[cur] = m;
nm[cur++] = 1;
}
} bool can_do(int x,int y) //检查因子
{
bool flag=true;
for(int i=0; i<cur; ++i)
{
while((x%pm[i]==0) && (x/=pm[i]))
nm[i]--;
while((y%pm[i]==0) && (y/=pm[i]))
nm[i]++;
if(nm[i]>0)
flag=false;
}
return flag;
}
int ans[100050]; int main()
{
int m,n;
while(~scanf("%d%d",&n,&m))
{
ini(m);
int tot = 0;
for(int i = 1; i <= n; i++)
{
if(can_do(n-i,i)) //n-i = (n-1)-i+1
{
ans[tot++] = i+1;
}
}
printf("%d\n",tot);
if(tot != 0)
{
for(int i = 0; i < tot-1; i++)
if(ans[i])
printf("%d ",ans[i]);
printf("%d",ans[tot-1]); }
printf("\n");
}
return 0;
}

  

例10-6 uva1635(唯一分解定理)的更多相关文章

  1. 例10-3 uva10375(唯一分解定理)

    题意:已知C(m,n) = m!/(n!(m-n)!),已知p,q,r,s,求C(p,q)/C(r,s) 思路: 全部分解成质因子,相乘则加,除则减 #include <iostream> ...

  2. LightOJ-1236 Pairs Forming LCM 唯一分解定理

    题目链接:https://cn.vjudge.net/problem/LightOJ-1236 题意 给一整数n,求有多少对a和b(a<=b),使lcm(a, b)=n 注意数据范围n<= ...

  3. 【组合数的唯一分解定理】Uva1635

    给出n.m,求得最终求和数列an=C(n-1,0)*x1 + C(n-1,1)*x2+...+C(n-1,n-1)*xn; 若xi与m无关,则an除以m的余数与xi无关,即余数不含xi的项: 输入:n ...

  4. 唯一分解定理(以Minimun Sum LCM UVa 10791为例)

    唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...

  5. LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...

  6. FZU 1075 分解素因子【数论/唯一分解定理/分解素因子裸模板】

    [唯一分解定理]:https://www.cnblogs.com/mjtcn/p/6743624.html 假设x是一个正整数,它的值不超过65535(即1<x<=65535),请编写一个 ...

  7. POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)

    Sumdiv Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  8. UVa10375:选择与除法(唯一分解定理)

    The binomial coefficient C(m,n) is defined as Given four natural numbers p, q, r, and s, compute the th ...

  9. Divisors (求解组合数因子个数)【唯一分解定理】

    Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...

  10. NOIP2009Hankson 的趣味题[唯一分解定理|暴力]

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...

随机推荐

  1. Python split()方法

    Python split()方法 描述 Python split()通过指定分隔符对字符串进行切片,如果参数num 有指定值,则仅分隔 num 个子字符串 语法 split()方法语法: str.sp ...

  2. 小草手把手教你 LabVIEW 串口仪器控制——VISA 串口配置

    建议大家按我发帖子的顺序来看,方便大家理解.请不要跳跃式的阅读.很多人现在看书,都跳跃式的看,选择性的看,导致有些细节的部分没有掌握到,然后又因为某个细节耽误很多时间.以上只是个人建议,高手可以略过本 ...

  3. 【iOS】swift 74个Swift标准库函数

    本文译自 Swift Standard Library: Documented and undocumented built-in functions in the Swift standard li ...

  4. 解决java.lang.NoSuchMethodError:org.joda.time.DateTime.withTimeAtStartOfDay() Lorg/joda/time/DateTime

    问题:项目放在weblogic运行,报错 java.lang.NoSuchMethodError: org.joda.time.DateTime.withTimeAtStartOfDay()Lorg/ ...

  5. C#网页提交html代码报错

    1.在页面顶部 Page 标签加入属性 ValidateRequest="false" 2.如果开发环境是4.0及以上,在web.config加入 <system.web&g ...

  6. webpack你值得拥有-从四个核心配置谈起

    很久没有发文章了,但是强调一点,大-熊同学最近可没闲着.学习算法,复习计算机网络,也顺便学习了一下webpack,看了看操作系统(没办法,都没学,要是不学连实习笔试都过不了,伤心--).本来比较纠结是 ...

  7. GZip 压缩及解压缩

    /// <summary> /// GZipHelper /// </summary> public class GZipHelper { /// <summary> ...

  8. 新概念英语(1-135)The latest report

    Lesson 135 The latest report 最新消息 Listen to the tape then answer this question. Is Karen Marsh going ...

  9. GIT入门笔记(13)- GUI GIT

  10. Mysql变量列表

    变量表解释 (https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html)