[bzoj4162]shlw loves matrix II
来自FallDream的博客,未经允许,请勿转载,谢谢
给定矩阵k*k的矩阵M,请计算 M^n,并将其中每一个元素对 1000000007 取模输出。 k<=50 n<=2^10000
考虑求出矩阵的特征多项式,这点我们可以通过带入$\lambda=x0..xk$,求出矩阵的行列式,然后通过插值求出多项式。
然后搬出一个很厉害的定理:f(A)=0 其中f(x)是特征多项式,A是矩阵,所以我们可以把所求的$x^{n}$对f(x)取膜,从而让答案变成一个k-1次多项式。然后我们把原矩阵带进去就行了。
插值的复杂度是$O(n^{4})$,然后后面那部分的复杂度是$k^{2}logn$
然后做了这道题好像懂了怎么在O(klogklogn)内做完"常系数线性递推",貌似还要nlogn的多项式取余 真麻烦TAT
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define mod 1000000007
using namespace std;
inline int read()
{
int x = ; char ch = getchar();
while(ch < '' || ch > '')ch = getchar();
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x;
} char st[];
int y[],k; int pow(int x,int k)
{
int sum=;
for(;k;k>>=,x=1LL*x*x%mod)
if(k&) sum=1LL*sum*x%mod;
return sum;
}
struct Matrix
{
int s[][];
Matrix operator*(Matrix b)
{
Matrix c;memset(c.s,,sizeof(c.s));
for(int i=;i<=k;i++)
for(int l=;l<=k;l++) if(s[i][l])
for(int j=;j<=k;j++)
c.s[i][j]=(c.s[i][j]+1LL*s[i][l]*b.s[l][j])%mod;
return c;
}
int calc()
{
int sum=,j;
for(int i=;i<=k;i++)
{
for(j=i;j<=k;j++)
if(s[j][i])
{
if(j!=i)
{
sum=mod-sum;
for(int l=;l<=k;l++)
swap(s[j][l],s[i][l]);
}
break;
}
if(j==k+) return ;
for(int j=i+;j<=k;j++)
{
int inv=1LL*pow(s[i][i],mod-)*s[j][i]%mod;
for(int l=i;l<=k;l++)
s[j][l]=(1LL*s[i][l]*inv%mod-s[j][l]+mod)%mod;
}
}
for(int i=;i<=k;i++) sum=1LL*sum*s[i][i]%mod;
return sum;
}
}a,b,ans; struct poly
{
int s[];
poly(int x=){memset(s,,sizeof(s));s[]=x;}
poly operator^(int x)
{
poly c;
for(int i=k<<;i;i--)
c.s[i]=(s[i-]+1LL*x*s[i])%mod;
c.s[]=(1LL*s[]*x)%mod;
return c;
}
poly operator*(int x)
{
poly c();
for(int i=;i<=k<<;i++)
c.s[i]=1LL*s[i]*x%mod;
return c;
}
poly operator+(poly b)
{
poly c();
for(int i=;i<=k<<;i++)
c.s[i]=(s[i]+b.s[i])%mod;
return c;
}
poly operator*(poly b)
{
poly c();
for(int i=;i<=k;i++)
for(int j=;j<=k;j++)
c.s[i+j]=(c.s[i+j]+1LL*s[i]*b.s[j])%mod;
return c;
}
friend poly operator%(poly a,poly b)
{
for(int i=k;i>=;i--)
{
int t=1LL*a.s[i+k]*pow(b.s[k],mod-)%mod;
for(int j=;j<=k;j++)
a.s[i+j]=(a.s[i+j]-1LL*b.s[j]*t%mod+mod)%mod;
}
return a;
}
}F(),Ans(); int main()
{
scanf("%s",st+);k=read();
for(register int i=;i<=k;i++)
for(register int j=;j<=k;j++)
b.s[i][j]=a.s[i][j]=read();
for(register int t=;t<=k;t++)
{
memcpy(b.s,a.s,sizeof(b.s));
for(int i=;i<=k;i++)
b.s[i][i]=(b.s[i][i]-t+mod)%mod;
y[t]=b.calc();
}
for(register int t=;t<=k;t++)
{
poly tmp();
for(register int i=;i<=k;i++) if(i!=t)
tmp=tmp^(mod-i),tmp=tmp*pow((t-i+mod)%mod,mod-);
tmp=tmp*y[t];F=F+tmp;
}
poly x();x.s[]=;
for(int i=strlen(st+);i;i--)
{
if(st[i]=='') Ans=Ans*x%F;
x=x*x%F;
}
memset(b.s,,sizeof(b.s));
for(int i=;i<=k;i++) b.s[i][i]=;
for(int t=;t<k;t++,b=a*b)
for(int i=;i<=k;i++)
for(int j=;j<=k;j++)
ans.s[i][j]=(ans.s[i][j]+1LL*Ans.s[t]*b.s[i][j])%mod;
for(register int i=;i<=k;i++)
for(register int j=;j<=k;j++)
printf("%d%c",ans.s[i][j],j!=k?' ':'\n');
return ;
}
[bzoj4162]shlw loves matrix II的更多相关文章
- BZOJ4162:shlw loves matrix II
传送门 利用Cayley-Hamilton定理,用插值法求出特征多项式 \(P(x)\) 然后 \(M^n\equiv M^n(mod~P(x))(mod~P(x))\) 然后就多项式快速幂+取模 最 ...
- [BZOJ]4162: shlw loves matrix II
Time Limit: 30 Sec Memory Limit: 128 MB Description 给定矩阵 M,请计算 M^n,并将其中每一个元素对 1000000007 取模输出. Inpu ...
- [bzoj4161]Shlw loves matrix I
来自FallDream的博客,未经允许,请勿转载,谢谢. 给定数列 {hn}前k项,其后每一项满足 hn = a1*h(n-1) + a2*h(n-2) + ... + ak*h(n-k) 其中 a1 ...
- 【leetcode】Spiral Matrix II
Spiral Matrix II Given an integer n, generate a square matrix filled with elements from 1 to n2 in s ...
- 59. Spiral Matrix && Spiral Matrix II
Spiral Matrix Given a matrix of m x n elements (m rows, n columns), return all elements of the matri ...
- leetcode-Spiral Matrix II 螺旋矩阵2之python大法好,四行就搞定,你敢信?
Spiral Matrix II 螺旋矩阵 Given an integer n, generate a square matrix filled with elements from 1 to n2 ...
- Search a 2D Matrix | & II
Search a 2D Matrix II Write an efficient algorithm that searches for a value in an m x n matrix, ret ...
- hdu 5265 pog loves szh II
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5265 pog loves szh II Description Pog and Szh are pla ...
- hdu 5265 pog loves szh II STL
pog loves szh II Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php? ...
随机推荐
- RxSwift:ReactiveX for Swift 翻译
RxSwift:ReactiveX for Swift 翻译 字数1787 阅读269 评论3 喜欢3 图片发自简书App RxSwift | |-LICENSE.md |-README.md |-R ...
- vue内置指令详解——小白速会
指令 (Directives) 是带有 v- 前缀的特殊属性,职责是,当表达式的值改变时,将其产生的连带影响,响应式地作用于 DOM. 内置指令 1.v-bind:响应并更新DOM特性:例如:v-bi ...
- zookeeper入门系列:概述
zookeeper可谓是目前使用最广泛的分布式组件了.其功能和职责单一,但却非常重要. 在现今这个年代,介绍zookeeper的书和文章可谓多如牛毛,本人不才,试图通过自己的理解来介绍zookeepe ...
- android 运行时异常捕获
1,将运行时异常捕获并存到手机SD卡上 可以直接使用logcat 命令Runtime.getRuntime().exec("logcat -f "+ file.getAbsolut ...
- Hey,man,are you ok? -- 关于心跳、故障监测、lease机制
电话之于短信.微信的一个很大的不同点在于,前者更加及时,有更快速直接的反馈:而后面两个虽然称之为instant message,但经常时发出去了就得等对方回复,等多久是不确定的.打电话能明确知道对方在 ...
- 一张图说明 Web Api 参数绑定默认规则
请求如下: 控制器如下: 慎重说明:不管请求方式是 get 还是 post , 简单类型的参数,如 name 和 id ,其值都是从 url 里面去取. Web API 从 url 还是 body 获 ...
- Linux系统把/home重新挂载到其他硬盘或分区
一开始没有做好规划,导致/home空间不足,再加上分区表不是GPT,导致无法扩展超过2T,因此需要重新划分一块更大的硬盘给/home. 1.把新挂载的4T硬盘进行分区和格式化 2.创建目录 sudo ...
- 作业三:模拟 mysql 进行增删改查
# !/usr/bin/env python3 # _*_coding:utf-8_*_ def help_sql(cmd): if cmd in func_dic.keys(): print('{} ...
- Android:后台给button绑定onClick事件、当返回项目到手机页面时提示是否退出APP
上一篇文章我们学习了android通过findViewById的方式查找控件,本章将了解button控件,及btton如何绑定控件. 通过android的ui设计工具设计一个登录页面: <Rel ...
- ZOJ-1586 QS Network---最小生成树Prim
题目链接: https://vjudge.net/problem/ZOJ-1586 题目大意: 首先给一个t,代表t个测试样例,再给一个n,表示有n个QS装置,接下来一行是n个QS装置的成本.接下来是 ...