●赘述题目

10*10的房间内,有竖着的一些墙(不超过18个)。问从点(0,5)到(10,5)的最短路。

按照输入样例,输入的连续5个数,x,y1,y2,y3,y4,表示(x,0--y1),(x,y2--y3),(x,y4--10)是墙壁。

●题解

方法:建图(用到简单计算几何)+最短路

○记录下每个端点。

○包含起点,终点,以及每个墙的可以走的端点,如下图:

○然后枚举点,尝试两两组合连(线段)边,若该线不会撞在墙上,即不会与墙壁线段相交,就add_adge()。

效果图如下:

如何判断呢? 计算几何呗。我用的方法如下,须同时满足两个条件:

●代码

#include<cmath>
#include<cstdio>
#include<queue>
#include<cstring>
#include<iostream>
using namespace std;
const double eps=1e-8;
typedef pair<double,int> pii;
struct point{double x,y;}p[105];
struct seg{double x1,y1,x2,y2;}w[105];
struct vec{
double x,y;
double operator ^(const vec rtm) {return x*rtm.y-y*rtm.x;} //向量叉乘(模)
vec operator -(const vec rtm) {return (vec){x-rtm.x,y-rtm.y};}
}v1,v2,v3,v4,v5,v6,v7,v8;
struct edge{
int to; double co; int next;
}e[10005];
int head[105];
double d[105];
int n,dnt,snt,ent;
double dis(point a,point b) {return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}
int sign(double a)
{
if(fabs(a)<eps) return 0;
return a>0?1:-1;
}
void add(int u,int v,double c)
{
e[ent]=(edge){v,c,head[u]};head[u]=ent++;
e[ent]=(edge){u,c,head[v]};head[v]=ent++;
}
void dijkstra()
{
for(int i=1;i<=dnt;i++) d[i]=1e7+9;
priority_queue<pii> q;
q.push((pii){0,1});d[1]=0;
while(!q.empty())
{
pii u=q.top();q.pop();
if(d[u.second]<u.first) continue;
for(int i=head[u.second];i!=-1;i=e[i].next)
{
int v=e[i].to;
if(d[v]>d[u.second]+e[i].co)
{
d[v]=d[u.second]+e[i].co;
q.push((pii){d[v],v});
}
}
}
}
int main()
{
p[++dnt]=(point){0,5}; p[++dnt]=(point){10,5};
while(1)
{
memset(head,-1,sizeof(head));
dnt=2;snt=0;ent=0;
scanf("%d",&n);
if(n==-1) break;
double x,y1,y2,y3,y4;
for(int i=1;i<=n;i++)
{
scanf("%f%f%f%f%f",&x,&y1,&y2,&y3,&y4);
p[++dnt]=(point){x,y1}; p[++dnt]=(point){x,y2}; p[++dnt]=(point){x,y3}; p[++dnt]=(point){x,y4};
w[++snt]=(seg){x,0,x,y1}; w[++snt]=(seg){x,y2,x,y3}; w[++snt]=(seg){x,y4,x,10};
}
bool fg;
for(int i=1;i<dnt;i++) for(int j=i+1;j<=dnt;j++)
{
fg=1;
for(int k=1;k<=snt;k++)
{
v1=(vec){p[i].x-w[k].x1,p[i].y-w[k].y1};
v2=(vec){p[i].x-w[k].x2,p[i].y-w[k].y2};
v3=(vec){p[j].x-w[k].x1,p[j].y-w[k].y1};
v4=(vec){p[j].x-w[k].x2,p[j].y-w[k].y2}; v5=(vec){0,0}-v1;
v6=(vec){0,0}-v3;
v7=(vec){0,0}-v2;
v8=(vec){0,0}-v4;
if(sign((v1^v2)*(v3^v4))<0&&(sign(v5^v6)*(v7^v8))<0) {fg=0;break;}
}
if(fg) add(i,j,dis(p[i],p[j]));
}
dijkstra();
printf("%.2f\n",d[2]);
}
return 0;
}

●POJ 1556 The Doors(简单计算几何+最短路)的更多相关文章

  1. [日常摸鱼]UVA393 The Doors 简单计算几何+最短路

    The  Boy Next   Doors 题意:给定一个固定大小的房间($x,y$的范围都是$[0,10]$),有$n$个墙壁作为障碍(都与横坐标轴垂直),每个墙壁都有两扇门分别用四个点来描述,起点 ...

  2. POJ 1556 The Doors --几何,最短路

    题意: 给一个正方形,从左边界的中点走到右边界的中点,中间有一些墙,问最短的距离是多少. 解法: 将起点,终点和所有墙的接触到空地的点存下来,然后两两之间如果没有线段(墙)阻隔,就建边,最后跑一个最短 ...

  3. POJ 1556 The Doors(线段交+最短路)

    #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm& ...

  4. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  5. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  6. 简单几何(线段相交+最短路) POJ 1556 The Doors

    题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...

  7. POJ 1556 The Doors(计算几何+最短路)

    这题就是,处理出没两个点.假设能够到达,就连一条边,推断可不能够到达,利用线段相交去推断就可以.最后求个最短路就可以 代码: #include <cstdio> #include < ...

  8. POJ 1556 - The Doors - [平面几何+建图spfa最短路]

    题目链接:http://poj.org/problem?id=1556 Time Limit: 1000MS Memory Limit: 10000K Description You are to f ...

  9. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

随机推荐

  1. 第14、15週PTA題目的處理

    題目1 選擇法排序 1.實驗代碼 #include <stdio.h> #include <stdlib.h> int main() { int n,index,exchang ...

  2. 咬碎STL空间配置器

    STL空间配置器 一.开场白: 给我的感觉就是,了解是空间配置器的功能,是那么的明了:在看原理,我还是很开心:接下来是360度大转变: 那么长的变量或者函数命名.那么多的宏.不爽,不过,遇上我这种二货 ...

  3. 201621123031 《Java程序设计》第5周学习总结

    作业05-继承.多态.抽象类与接口 1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 关键字:接口.继承.多态 1.2 尝试使用思维导图将这些关键词组织起来.注:思维导图一般不需 ...

  4. js 开发注意事项

    涉及api post 请求的, 涉及sqlite 存储的, conent 用encodeURIComponent, decodeURIComponent ,处理 JSON.parse 最好加上try ...

  5. ASP.NET CORE 自定义视图组件(ViewComponent)注意事项

    *红色字体为固定命名,蓝色为一般命名规则,黄色为ASP.NET CORE 默认查找文件名 概要:1.简单ViewComponent的用法 2.ViewComponent控制器返回值  3.注意事项 1 ...

  6. [翻译]现代java开发指南 第三部分

    现代java开发指南 第三部分 第三部分:Web开发 第一部分,第二部分,第三部分 =========================== 欢迎来到现代 Java 开发指南第三部分.在第一部分中,我们 ...

  7. MySQL binlog 日志

    一:MySQL 日志的三种类型: statement.row.mix 格式.推荐使用row格式. 怎么设置自己的日志格式呢? 1. set globle binlog_format='MIXED' 2 ...

  8. Tomcat(1-1)重置Tomcat8.5管理员的用户名和密码

    1.访问 http://localhost:8080/,点击 [manager app],提示输入用户名和密码,admin/admin后报错.  2.解决办法:重置Tomcat8.5管理员的用户名和密 ...

  9. C#微信公众号开发——access_token的获取

    access_token是公众号的全局唯一票据,公众号调用各接口时都需使用access_token.正常情况下access_token有效期为7200秒,重复获取将导致上次获取的access_toke ...

  10. nginx配置反向代理详细教程(windows版)

    内容属于原创,如果需要转载,还请注明地址:http://www.cnblogs.com/j-star/p/8785334.html Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(I ...