在读线代书。因为之前并没有上过线性代数的课。所以决定把基础打牢牢。

读书的时候当然会出现不懂的概念和术语或者定理什么的。所以在这记录一下啦~~~

hermit矩阵
要理解它好像先要知道什么是共轭(conjugate)。

参见百度百科:https://baike.baidu.com/item/%E5%85%B1%E8%BD%AD/31802

本意:两头牛背上的架子称为轭,轭使两头牛同步行走。共轭即为按一定的规律相配的一对。通俗点说就是孪生。

共轭关系,通俗来说一般用以描述两件事物以一定规律相互配对或孪生(一般共轭对整体很相似,但在某些特征上却性质相反)

数学上的共轭:

共轭复数:实数部分相同而虚数部分互为相反数的两个复数。

矩阵的共轭转置:把矩阵转置后,再把每一个数换成它的共轭复数。

自共轭矩阵:矩阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。

自共轭矩阵就是hermit矩阵

hermite矩阵的更多相关文章

  1. 对称矩阵、Hermite矩阵、正交矩阵、酉矩阵、奇异矩阵、正规矩阵、幂等矩阵

    2016-01-27 21:03 524人阅读 评论(0) 收藏 举报 分类: 理论/笔记(20) 版权声明:本文为博主原创文章,转载请注明出处,谢谢! 题目:对称矩阵.Hermite矩阵.正交矩阵. ...

  2. Hermite 矩阵的特征值不等式

    将要学习 关于 Hermite 矩阵的特征值不等式. Weyl 定理 以及推论.   Weyl 定理 Hermann Weyl 的如下定理是大量不等式的基础,这些不等式要么涉及两个 Hermite 矩 ...

  3. Hermite 矩阵及其特征刻画

    将学习到什么 矩阵 \(A\) 与 \(\dfrac{1}{2}(A+A^T)\) 两者生成相同的二次型,而后面那个矩阵是对称的,这样以来,为了研究实的或者复的二次型,就只需要研究由对称矩阵生成的二次 ...

  4. 矩阵的基本性质 之 对称矩阵,Hermite矩阵,正交矩阵,酉矩阵

    1.对称矩阵 2.Hermite矩阵 3.正交矩阵 4.酉矩阵

  5. 矩阵的SVD分解

    转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都 ...

  6. GNU scientific library

    GNU scientific library 是一个强大的C,C++数学库.它涉及的面很广,并且代码效率高,接口丰富.正好最近做的一个项目中用到多元高斯分布,就找到了这个库. GNU scientif ...

  7. 机器学习之SVD分解

    一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩 ...

  8. [Tensorflow] Cookbook - The Tensorflow Way

    本章介绍tf基础知识,主要包括cookbook的第一.二章节. 方针:先会用,后定制 Ref: TensorFlow 如何入门? Ref: 如何高效的学习 TensorFlow 代码? 顺便推荐该领域 ...

  9. 奇异分解(SVD)

    奇异分解 假设C是m×n矩阵,U是m×m矩阵,其中U的列为 的正交特征向量,V为n×n矩阵,其中V的列为 的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解: 其中和的特征值相同,为 ,且. 是m ...

随机推荐

  1. HashMap的底层原理

    简单说: 底层原理就是采用数组加链表: 两张图片很清晰地表明存储结构: 既然是线性数组,为什么能随机存取?这里HashMap用了一个小算法,大致是这样实现: // 存储时: int hash = ke ...

  2. [Scala] 安装及环境配置(图文)

    Window 上安装配置 1.Java(JDK)环境配置,详见 Java(JDK)环境 2.从 Scala 官网下载安装包:https://downloads.lightbend.com/scala/ ...

  3. EM算法的直观描述

    解决含有隐变量的问题有三种方法,其中第三种方法就是通常所说的em算法.下面以统计学习方法中给出的三硬币问题为例来分别描述这三种方法.(a,b,c三硬币抛出来为正的概率分别为pai,p,q,每轮抛硬币先 ...

  4. 安装/或更新node和npm

    1.安装/或更新node和npm     安装node: node 的官网 nodejs.org 去下载 msi 安装包     更新npm: 使用命令  npm install npm@latest ...

  5. 第一次作业:来自一个奋斗的IT学子

    第一部分 结缘计算机 1.1你为什么选择计算机专业?你认为你的条件如何?和这些博主比呢?(必答) 说起为何结缘了计算机,就得谈谈专业报考了,我觉得我的报考真是一个反面教科书了.由于高中以前每天只要想着 ...

  6. aws中的路由表

    参考官方文档: 由表中包含一系列被称为路由的规则,可用于判断网络流量的导向目的地. 在您的 VPC 中的每个子网必须与一个路由表关联:路由表控制子网的路由.一个子网一次只能与一个路由表关联,但您可以将 ...

  7. java方法的定义格式

    Java的方法类似于其他语言的函数,是一段用来完成特定功能的代码片段,声明格式为: [修饰符1  修饰符2  …..] 返回值类型  方法名( 形式参数列表 ){ Java 语句;… … … } 例如 ...

  8. poj2029 Get Many Persimmon Trees

    http://poj.org/problem?id=2029 单点修改 矩阵查询 二维线段树 #include<cstdio> #include<cstring> #inclu ...

  9. codevs 3342 绿色通道

    codevs 3342 绿色通道 http://codevs.cn/problem/3342/ 难度等级:黄金 题目描述 Description <思远高考绿色通道>(Green Pass ...

  10. Python习题(第一课)

    想了想其他的太简单了,还是不放了,剩三题吧. 一.完美立方 编写一个程序,对任给的正整数N (N≤100),寻找所有的四元组(a, b, c, d),使得a^3= b^3 + c^3 + d^3,其中 ...