Description

题库链接

定义 \(F(x)\) 为 \(F(x-1)\) 与 \(F(x-2)\) 的连接(其中 \(F(0) = "0",F(1) = "1"\) )。给出一个长度为 \(n\) 的 \(01\) 字符串 \(s\) ,询问 \(s\) 在 \(F(x)\) 的所有子序列中出现了多少次。

\(1\leq n\leq 100,0\leq x\leq 100\)

Solution

首先 \(F(x)\) 是递归来定义的,显然我们可以递推来计算答案。

记 \(f_{l,r,i}\) 表示 \(F(i)\) 的所有子串中 \(s_{l\sim r}\) 出现的次数。

来考虑转移,一共有三部分:

  1. \(l\sim r\) 完全在 \(F(i-1)\) 中。此时若 \(r=n\) ,那么可以在 \(F(i-2)\) 中乱选,则有 \(2^{len(F(i-2))}\) 种;若 \(r\neq n\) ,因为不能在后面乱选,所以贡献只有 \(1\) 倍。
  2. \(l\sim r\) 完全在 \(F(i-2)\) 中。这种讨论和 1. 中相同。
  3. 最后分为在不同的两段中,设 \(s_{l\sim k}\) 在 \(F(i-1)\) 中;设 \(s_{k+1\sim r}\) 在 \(F(i-2)\) 中。则 \(f_{l,r,i}=f_{l,k,i-1}\times f_{k+1,r,i-2}\) 。

Code

//It is made by Awson on 2018.3.13
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 100, yzh = 1e9+7;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, x, g[N+5];
int f[N+5][N+5][N+5];
char ch[N+5]; int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%yzh;
b >>= 1, a = 1ll*a*a%yzh;
}
return ans;
}
void work() {
read(n), read(x); scanf("%s", ch+1); g[0] = g[1] = 1;
for (int i = 2; i <= x; i++) g[i] = (g[i-1]+g[i-2])%(yzh-1);
for (int i = 0; i <= x; i++) g[i] = quick_pow(2, g[i]);
for (int i = 1; i <= n; i++)
if (ch[i] == '0') f[i][i][0] = 1; else f[i][i][1] = 1;
for (int i = 2; i <= x; i++) {
for (int l = 1; l <= n; l++)
for (int r = l; r <= n; r++) {
if (r == n) (f[l][r][i] += 1ll*f[l][r][i-1]*g[i-2]%yzh) %= yzh;
else (f[l][r][i] += f[l][r][i-1]) %= yzh;
if (l == 1) (f[l][r][i] += 1ll*f[l][r][i-2]*g[i-1]%yzh) %= yzh;
else (f[l][r][i] += f[l][r][i-2]) %= yzh;
for (int k = l; k < r; k++)
(f[l][r][i] += 1ll*f[l][k][i-1]*f[k+1][r][i-2]%yzh) %= yzh;
}
}
writeln(f[1][n][x]);
}
int main() {
work(); return 0;
}

[Codeforces 946F]Fibonacci String Subsequences的更多相关文章

  1. codefroces 946F Fibonacci String Subsequences

    Description定义$F(x)$为$F(x−1)$与$F(x−2)$的连接(其中$F(0)="0"$,$F(1)="1"$)给出一个长度为$n$的$01$ ...

  2. HDU 1708 简单dp问题 Fibonacci String

    Fibonacci String Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. HDOJ(HDU) 1708 Fibonacci String

    Problem Description After little Jim learned Fibonacci Number in the class , he was very interest in ...

  4. hdu 1708 Fibonacci String

    Fibonacci String Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...

  5. Fibonacci String(hdu 1708)

    Fibonacci String Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. CodeForces 797C Minimal string:贪心+模拟

    题目链接:http://codeforces.com/problemset/problem/797/C 题意: 给你一个非空字符串s,空字符串t和u.有两种操作:(1)把s的首字符取出并添加到t的末尾 ...

  7. Codeforces 827E Rusty String - 快速傅里叶变换 - 暴力

    Grigory loves strings. Recently he found a metal strip on a loft. The strip had length n and consist ...

  8. Codeforces 797C - Minimal string

    C. Minimal string 题目链接:http://codeforces.com/problemset/problem/797/C time limit per test 1 second m ...

  9. codeforces 825F F. String Compression dp+kmp找字符串的最小循环节

    /** 题目:F. String Compression 链接:http://codeforces.com/problemset/problem/825/F 题意:压缩字符串后求最小长度. 思路: d ...

随机推荐

  1. 第二次作业-关于Steam游戏平台的简单分析

    1.1 Steam平台的简单介绍 你选择的产品是? 如题,这次的作业我选择了Steam作为分析的对象. 为什么选择该产品作为分析? 我选择数字游戏贩售平台STEAM作为分析对象的原因有以下几点: 1. ...

  2. c语言-第零次作业

    1.你认为大学的学习生活.同学关系.师生应该是怎样?请一个个展开描述. 我很荣幸能考进集美大学.集美大学历史悠久.师资力量雄厚.教师与学生素质高.并且集美大学的学习生活和我理想中的一样!首先老师认真负 ...

  3. alpha-咸鱼冲刺day3

    一,合照 emmmmm.自然还是没有的. 二,项目燃尽图 三,项目进展 今天把数据库的表给建好了,学长那边把登陆跟注册页面也做好了(纯页面,html5+css的那种) 四,问题困难 日常啥都不会,百度 ...

  4. C语言-第一次作业

    题目6-1 计算两数的和与差 1.设计思路 (1)主要描述题目算法 第一步:看主函数知道程序输入浮点型变量a,b,通过函数计算输出和与差. 第二步:函数部分将a赋值op1,b赋值op2,&su ...

  5. linux 50个常用命令

    1.ls命令 ls是list的缩写,常用命令为ls(显示出当前目录列表),ls -l(详细显示当前目录列表),ls -lh(人性化的详细显示当前目录列表),ls -a(显示出当前目录列表,包含隐藏文件 ...

  6. 成功案例分享:raid5两块硬盘掉线数据丢失恢复方法

    1. 故障描述    本案例是HP P2000的存储vmware exsi虚拟化平台,由RAID-5由10块lT硬盘组成,其中6号盘是热备盘,由于故障导致RAID-5磁盘阵列的两块盘掉线,表现为两块硬 ...

  7. 关于网页设计的css+html相对定位和决定定位的理解

    css中有很多定位,其中最重要的是相对定位和绝对定位: 定位很重要,不搞好,网页就会很乱,显示的完全不是自己想要的效果,自己必须掌握: 首先说一个重要的结论:绝对定位,是不占位置的,总是相对离自己最近 ...

  8. Python内置函数(10)——float

    英文文档: class float([x]) Return a floating point number constructed from a number or string x. If the ...

  9. 前端基础之html-Day12

    1.web服务本质 import socket def main(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bi ...

  10. kubernetes进阶(04)kubernetes的service

    一.service概念 Service是对一组提供相同功能的Pods的抽象,并为它们提供一个统一的入口.借助Service,应用可以方便的实现服务发现与负载均衡,并实现应用的零宕机升级.Service ...