Description

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

Input

第一行是两个整数N和S,其中N是树的节点数。 第二行是N个正整数,第i个整数表示节点i的正整数。 接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

Output

输出路径节点总和为S的路径数量。

Range

对于100%数据,N<=100000,所有权值以及S都不超过1000。

Solution

转化一下题意,就是求树上的一条链,使权值之和等于s。

我们可以利用dfs求出树上每个点到根的权值和(也就是树上的前缀和),在回溯的过程中求出答案即可。

具体做法是,当我们在搜一个点 i 时,看一眼有没有它的某个祖先 j 使得 qzh[j]-qzh[i]=p

如何找这个祖先呢?我们可以用 STL 中的 set ,在 dfs 的时候将当前点的前缀和插进集合,回溯的时候找集合中是否有值为 p-qzh[now] 的点,如果有,代表它的某个祖先到它即为一条合法路径, ans++,回溯最后记得从集合中 erase 掉 qzh[now] 即可。

Code

#include<set>
#include<cstdio>
#define N 100005
#define int long long
using namespace std;

int ans;
set<int> s;
int head[N];
int is_root[N];
int val[N],qzh[N];
;

struct Edge{
    int to,nxt;
}edge[];

void add(int x,int y){
    edge[++cnt].to=y;
    edge[cnt].nxt=head[x];
    head[x]=cnt;
}

void dfs(int now,int fa){
    for(int i=head[now];i;i=edge[i].nxt){
        if(edge[i].to==fa) continue;
        s.insert(qzh[now]);
        qzh[edge[i].to]=qzh[now]+val[edge[i].to];
        dfs(edge[i].to,now);
        int k=qzh[edge[i].to]-p;
        if(s.count(k)) ans++;
        s.erase(qzh[edge[i].to]);
    }
}

signed main(){
    scanf("%lld%lld",&n,&p);
    ;i<=n;i++) scanf("%lld",&val[i]);
    ;i<n;i++){
        scanf("%lld%lld",&x,&y);
        add(x,y);add(y,x);
    }
    s.insert();
    qzh[]=val[];
    dfs(,);
    printf("%lld",ans);
    ;
}

[JLOI2012] 树的更多相关文章

  1. BZOJ2783: [JLOI2012]树 dfs+set

    2783: [JLOI2012]树 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 588  Solved: 347 Description 数列 提交文 ...

  2. 2783: [JLOI2012]树( dfs + BST )

    直接DFS, 然后用set维护一下就好了.... O(nlogn) ------------------------------------------------------------------ ...

  3. 【BZOJ2783】[JLOI2012]树 DFS+栈+队列

    [BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节 ...

  4. 题解 P3252 【[JLOI2012]树】

    \(\Huge{[JLOI2012]树}\) 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点 ...

  5. 洛谷——P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

  6. 洛谷 P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

  7. BZOJ2783: [JLOI2012]树

    Description 数列 提交文件:sequence.pas/c/cpp 输入文件:sequence.in 输出文件:sequence.out 问题描述: 把一个正整数分成一列连续的正整数之和.这 ...

  8. BZOJ2783: [JLOI2012]树(树上前缀和+set)

    Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1215  Solved: 768[Submit][Status][Discuss] Descriptio ...

  9. [bzoj2783][JLOI2012]树_树的遍历

    树 bzoj2783 JLOI2012 题目大意:给定一棵n个点的树.求满足条件的路径条数.说一个路径是满足条件的,当且仅当这条路径上每个节点深度依次递增且点权和为S. 注释:$1\le n\le 1 ...

  10. [BZOJ2783/JLOI2012]树 树上倍增

    Problem 树 题目大意 给出一棵树,求这个树上的路径的数量,要求路径上的点权和等于s且路径的上每个点深度不同. Solution 这个题目可以用不少方法做. 首先,路径上每个节点的深度不同决定了 ...

随机推荐

  1. 最实用的Android开发学习路线分享

    Android开发学习路线分享.Android发展主导移动互联发展进程,在热门行业来说,Android开发堪称火爆,但是,虽然Android有着自身种种优势,但对开发者的专业性要求也是极高,这种要求随 ...

  2. R语言︱ 数据库SQL-R连接与SQL语句执行(RODBC、sqldf包)

    要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 数据库是极其重要的R语言数据导入源 ...

  3. calendar中set方法和静态属性带来的坑

    坑在哪里: 在我之前接触的一个项目中涉及到这么一项功能:每天00:00:00把某些数据移动到mongodb数据库的另一个集合中,也就是关系型数据库的表中.这个集合名是一个固定的名称加上当前的两个月前的 ...

  4. FusionCharts Marimekko图

    1.Marimekko静态页面 Marimekko.html: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//E ...

  5. Linux 系统裁剪笔记 3

    说到裁减Linux,无非是为了减小磁盘占用或者是为了某些特定场合的应用(如嵌入式系统).以RedHat 7.3为例,其最小安装仍然达到了300M,这不得不让人对一直号称小而全的Linux系统感到疑惑. ...

  6. javascript学习笔记 --event事件

    事件源(按钮.窗口)->事件对象->事件处理程序 事件源可以是网页元素浏览器窗口事件处理程序一般是一个函数.       一个事件可以被多个函数处理       事件的总类       鼠 ...

  7. freemarker处理哈希表的内建函数

    freemarker处理哈希表的内建函数 1.简易说明 (1)map取值 (2)key取值 2.实现示例 <html> <head> <meta http-equiv=& ...

  8. ACM1007

    题目:DNA序列排序 DNA序列由一序列的大写英文字母表示,如ABCDEF.紊乱程度表示组成DNA序列的字母按照由小到大的顺序进行排列程度,如ABC的紊乱程度比ACB小,因为它字母都是由小到大排序的. ...

  9. 你还在为如何区分ASCII编码、GB2312编码、Unicod、UTF-8编码而烦恼吗,一篇文章让你柳暗花明

    字符编码 我们已经讲过了,字符串也是一种数据类型,但是,字符串比较特殊的是还有一个编码问题. 因为计算机只能处理数字,如果要处理文本,就必须先把文本转换为数字才能处理.最早的计算机在设计时采用8个比特 ...

  10. 【Elasticsearch全文搜索引擎实战】之Kibana搭建

    1. Kibana介绍 Kibana是一个针对Elasticsearch的开源分析及可视化平台,用来搜索.查看交互存储在Elasticsearch索引中的数据.使用Kibana,可以通过各种图表进行高 ...