BZOJ_4269_再见Xor_线性基

Description

给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值。

Input

第一行一个正整数N。
接下来一行N个非负整数。

Output

一行,包含两个数,最大值和次大值。

Sample Input

3
3 5 6

Sample Output

6 5

HINT

100% : N <= 100000, 保证N个数不全是0,而且在int范围内

高斯消元后的线性基有如下性质:
  每个向量的最高位对应的列只有这1个1。
因此所有线性基异或起来一定是最大的,并且异或上最后一个一定是次大的。
同理我们可以求出第k大的。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <bitset>
using namespace std;
int n,a[100050],b[100],cnt,tot;
void Gauss() {
int i,j;
for(i=(1<<30);i;i>>=1) {
tot++;
int mx=tot;
while(mx<=n&&!(a[mx]&i)) mx++;
if(mx==n+1) {
tot--; continue;
}
b[++cnt]=i;
swap(a[tot],a[mx]);
for(j=1;j<=n;j++) {
if(tot!=j&&(a[j]&i)) a[j]^=a[tot];
}
}
}
int main() {
scanf("%d",&n);
int i;
for(i=1;i<=n;i++) scanf("%d",&a[i]);
Gauss();
int ans=0;
for(i=1;i<=tot;i++) ans^=a[i];
printf("%d %d\n",ans,ans^a[tot]);
}

BZOJ_4269_再见Xor_线性基的更多相关文章

  1. BZOJ4269:再见Xor(线性基)

    Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. Input 第一行一个正整数N. 接下来一行N个非负整数. ...

  2. BZOJ 4269: 再见Xor 线性基+贪心

    Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. Input 第一行一个正整数N. 接下来一行N个非负整数. ...

  3. 【BZOJ-4269】再见Xor 高斯消元 + 线性基

    4269: 再见Xor Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 131  Solved: 81[Submit][Status][Discuss] ...

  4. BZOJ 4269: 再见Xor [高斯消元 线性基]

    4269: 再见Xor Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 我太愚蠢了连数组开小了以及$2^{ ...

  5. BZOJ4269再见Xor——高斯消元解线性基

    题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...

  6. 【bzoj4269】再见Xor 高斯消元求线性基

    题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...

  7. Codeforces1101G (Zero XOR Subset)-less 【线性基】【贪心】

    题目分析: 考虑到这是一个区间的异或问题,不妨求出前缀和,令$sum[i] = Xor_{j=1}^{i}a[j]$. 对于区间$[l,r]$的异或结果,等于$sum[r] \oplus sum[l- ...

  8. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  9. BZOJ 2115 [Wc2011] Xor ——线性基

    [题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有 ...

随机推荐

  1. 初步认识thymeleaf:简单表达式和标签(二)

    1.th:each:循环,<tr th:each="user,userStat:${users}">,userStat是状态变量,有 index,count,size, ...

  2. tomcat jvm优化

    tomcat优化(全) (2012-09-26 10:12:59) 转载▼ 标签: 杂谈 分类: java 1.内存设置(VM参数调优)(1). Windows环境下,是tomcat解压版(执行sta ...

  3. Ubuntu设置代理的方法

    用过Linux的都知道,众多的PROXY配置,让人应接不暇,本文列出常见的一些PROXY的配置 1.apt-get proxy 的配置sudo gedit /etc/apt/apt.conf NOTE ...

  4. RA layer request failed

    新整的Eclipse环境出现这个问题,细化内容是不能connect,后来想起切换Eclipse底层库的事情,然后打开Eclipse的SVN设置.把SVN Client借口由JavaHL改为PureJa ...

  5. Spring Cache 笔记

    @(Java ThirdParty)[Spring Cache] Spring Cache Abstraction 简介 Spring Cache提供了对底层缓存使用的抽象,通过注解的方式使用缓存,减 ...

  6. 强大的代码编辑器 phpstorm version 2016.2 License Server激活

    "磨刀不误砍柴工","工欲善其事必先利其器",找个一个好的代码开发编辑工具可以让我们事半功倍,并且代码质量得到保障,在这里就推荐一款强大的代码编辑器,不对其实可 ...

  7. DOM4J熟知

    什么是解析xml 系统最终会从xml中读取数据. 读取的过程就是解析. CRUD ==> 增删改查 ==> create read update delete ==> 解析指的就是读 ...

  8. 基于elk 实现nginx日志收集与数据分析。

    一.背景 前端web服务器为nginx,采用filebeat + logstash + elasticsearch + granfa 进行数据采集与展示,对客户端ip进行地域统计,监控服务器响应时间等 ...

  9. 统一流控服务开源-1:场景&业界做法&算法篇

    最近团队在搞流量安全控制,为了应对不断增大的流量安全风险.Waf防护能做一下接入端的拦截,但是实际流量会打到整个分布式系统的每一环:Nginx.API网关.RPC服务.MQ消息应用中心.数据库.瞬间的 ...

  10. mac的terminal快捷键

    mac终端terminal快捷键: Command + K 清屏 Command + T 新建标签 Command +W  关闭当前标签页 Command + S  保存终端输出 Command + ...