[Noi2016]区间 BZOJ4653 洛谷P1712 Loj#2086
额...
首先,看到这道题,第一想法就是二分答案+线段树...
兴高采烈的认为我一定能AC,之后发现n是500000...
nlog^2=80%,亲测可过...
由于答案是求满足题意的最大长度-最小长度最小,那么我们可以考虑将区间按长度排序
之后,因为我们是需要最大最小,所以,我们必定选择在排完序的区间上取连续的一段是最优情况(起码不会比别的差)
因此,考虑双指针扫一下就可以了...
是不是很水?
由于懒得写离散化,一开始写的动态开点线段树,我*****什么鬼?mle?!256mb开不下!
loj+洛谷上95%,附上代码...
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <queue>
using namespace std;
#define N 500005
#define lson l,m,tr[rt].ls
#define rson m+1,r,tr[rt].rs
#define PushUp(rt) tr[rt].maxx=max(tr[tr[rt].ls].maxx,tr[tr[rt].rs].maxx)
struct no
{
int ls,rs,maxx,add;
}tr[N*40];
int n,m,ans,cnt;
struct node
{
int l,r,len;
}a[N];
bool cmp(const node &a,const node &b)
{
return a.len<b.len;
}
void PushDown(int rt)
{
if(tr[rt].add)
{
if(!tr[rt].ls)tr[rt].ls=++cnt;
if(!tr[rt].rs)tr[rt].rs=++cnt;
tr[tr[rt].ls].maxx+=tr[rt].add;
tr[tr[rt].rs].maxx+=tr[rt].add;
tr[tr[rt].ls].add+=tr[rt].add;
tr[tr[rt].rs].add+=tr[rt].add;
tr[rt].add=0;
}
}
void Update(int L,int R,bool c,int l,int r,int &rt)
{
if(!rt)rt=++cnt;
if(L<=l&&r<=R)
{
tr[rt].maxx+=c?1:-1;
tr[rt].add+=c?1:-1;
return ;
}
PushDown(rt);
int m=(l+r)>>1;
if(m>=L)Update(L,R,c,lson);
if(m<R)Update(L,R,c,rson);
PushUp(rt);
}
int main()
{
ans=1<<30;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i].l,&a[i].r);
a[i].len=a[i].r-a[i].l;
}
sort(a+1,a+n+1,cmp);
int l=1,r=0,rot=0;
while(r<n)
{
while(tr[rot].maxx<m&&r<n){r++;Update(a[r].l,a[r].r,1,0,1<<30,rot);}
if(tr[rot].maxx<m)break;
while(tr[rot].maxx>=m&&l<n){Update(a[l].l,a[l].r,0,0,1<<30,rot);l++;}
ans=min(a[r].len-a[l-1].len,ans);
}
printf("%d\n",ans==1<<30?-1:ans);
return 0;
}
这显然就不能AC,那么我们可以考虑用一下离散化...
离散化后,线段树的空间复杂度从(nlog(1<<30))变成(nlog(n*2))之后,空间就降下来了...
附上AC代码...
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <queue>
using namespace std;
#define N 500005
#define lson l,m,tr[rt].ls
#define rson m+1,r,tr[rt].rs
#define PushUp(rt) tr[rt].maxx=max(tr[tr[rt].ls].maxx,tr[tr[rt].rs].maxx)
struct no
{
int ls,rs,maxx,add;
}tr[N*10];
int p[N<<1];
int n,m,ans,cnt;
struct node
{
int l,r,len;
}a[N];
bool cmp(const node &a,const node &b)
{
return a.len<b.len;
}
void PushDown(int rt)
{
if(tr[rt].add)
{
if(!tr[rt].ls)tr[rt].ls=++cnt;
if(!tr[rt].rs)tr[rt].rs=++cnt;
tr[tr[rt].ls].maxx+=tr[rt].add;
tr[tr[rt].rs].maxx+=tr[rt].add;
tr[tr[rt].ls].add+=tr[rt].add;
tr[tr[rt].rs].add+=tr[rt].add;
tr[rt].add=0;
}
}
void Update(int L,int R,bool c,int l,int r,int &rt)
{
if(!rt)rt=++cnt;
if(L<=l&&r<=R)
{
tr[rt].maxx+=c?1:-1;
tr[rt].add+=c?1:-1;
return ;
}
PushDown(rt);
int m=(l+r)>>1;
if(m>=L)Update(L,R,c,lson);
if(m<R)Update(L,R,c,rson);
PushUp(rt);
}
int main()
{
ans=1<<30;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i].l,&a[i].r);
a[i].len=a[i].r-a[i].l;
p[(i<<1)-1]=a[i].l;
p[i<<1]=a[i].r;
}
sort(p+1,p+n*2+1);
for(int i=1;i<=n;i++)
{
int x=lower_bound(p+1,p+n*2+1,a[i].l)-p;
a[i].l=x;
x=lower_bound(p+1,p+n*2+1,a[i].r)-p;
a[i].r=x;
}
sort(a+1,a+n+1,cmp);
int l=1,r=0,rot=0;
while(r<n)
{
while(tr[rot].maxx<m&&r<n){r++;Update(a[r].l,a[r].r,1,1,n*2,rot);}
if(tr[rot].maxx<m)break;
while(tr[rot].maxx>=m&&l<n){Update(a[l].l,a[l].r,0,1,n*2,rot);l++;}
ans=min(a[r].len-a[l-1].len,ans);
}
printf("%d\n",ans==1<<30?-1:ans);
return 0;
}
离散化什么的,用lower_bound就好了,懒得写二分查找了...反正不会tle...
[Noi2016]区间 BZOJ4653 洛谷P1712 Loj#2086的更多相关文章
- 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化
洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...
- BZOJ5291/洛谷P4458/LOJ#2512 [Bjoi2018]链上二次求和 线段树
原文链接http://www.cnblogs.com/zhouzhendong/p/9031130.html 题目传送门 - LOJ#2512 题目传送门 - 洛谷P4458 题目传送门 - BZOJ ...
- 洛谷P4501/loj#2529 [ZJOI2018]胖(ST表+二分)
题面 传送门(loj) 传送门(洛谷) 题解 我们对于每一个与宫殿相连的点,分别计算它会作为多少个点的最短路的起点 若该点为\(u\),对于某个点\(p\)来说,如果\(d=|p-u|\),且在\([ ...
- 洛谷P4459/loj#2511 [BJOI2018]双人猜数游戏(博弈论)
题面 传送门(loj) 传送门(洛谷) 题解 所以博弈论的本质就是爆搜么-- 题解 //minamoto #include<bits/stdc++.h> #define R registe ...
- 洛谷P4458 /loj#2512.[BJOI2018]链上二次求和(线段树)
题面 传送门(loj) 传送门(洛谷) 题解 我果然是人傻常数大的典型啊-- 题解在这儿 //minamoto #include<bits/stdc++.h> #define R regi ...
- 洛谷P4457/loj#2513 [BJOI2018]治疗之雨(高斯消元+概率期望)
题面 传送门(loj) 传送门(洛谷) 题解 模拟赛的时候只想出了高斯消元然后死活不知道怎么继续--结果正解居然就是高斯消元卡常? 首先有个比较难受的地方是它一个回合可能不止扣一滴血--我们得算出\( ...
- BZOJ4653 & 洛谷1712 & UOJ222:[NOI2016]区间——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4653 https://www.luogu.org/problemnew/show/P1712 ht ...
- 【洛谷 P1712】 [NOI2016]区间 (线段树+尺取)
题目链接 emmm看起来好像无从下手, \(l_i,r_i\)这么大,肯定是要离散化的. 然后我们是选\(m\)个区间,我们先对这些区间按长度排个序也不影响. 排序后,设我们取的\(m\)个区间的编号 ...
- 洛谷 P1712 [NOI2016]区间(线段树)
传送门 考虑将所有的区间按长度排序 考虑怎么判断点被多少区间覆盖,这个可以离散化之后用一棵权值线段树来搞 然后维护两个指针$l,r$,当被覆盖次数最多的点的覆盖次数小于$m$时不断右移$r$,在覆盖次 ...
随机推荐
- 第8章-Java集合 --- 概述
第8章-Java集合 --- 概述 (1)Java集合类是一种特别有用的工具类,可以用于存储数量不等的多个对象,并可以实现常用的数据结构,如 栈.队列等. (2)Java集合大致可分为Set.List ...
- MySQL基本sql语句
MySQL基本操作语句 操作文件夹(库) 增加create database 库名 charset utf8;charset utf8是指定库的字符编码删除drop database 库名删除某个数据 ...
- eclipse更新time out的问题
因为网络等诸方面的原因,中国国内访问download.eclipse.org非常慢,更新往往都会失败,简单解决的是从eclipse官网下载镜像列表中选一个中国镜像设为更新站点,当然这个镜像的选择,需要 ...
- Sec site list
Seclist: 英语: http://seclists.org/ http://www.securityfocus.com/ http://www.exploit-db.com/ http ...
- 通过终端使用ssh-keygen免密码登录远程服务器
使用终端ssh登录远程Linux服务器,每次不输入如密码 原理:使用keygen认证,实现免密码验证即可登录服务器. Linux(包括Mac OS): $ ssh-keygen /*生成密钥*/ $ ...
- SublimeText3常用快捷键和优秀插件
SublimeText3常用快捷键和优秀插件 SublimeText是前端的一个神器,以其精简和可DIY而让广大fans疯狂.好吧不吹了直入正题 -_-!! 首先是安装,如果你有什么软件管家的话搜一下 ...
- remove the nth node from the end of the list
problem description: remove the nth node from the end of the list for example: given: 1->2->3 ...
- html块级元素与行内元素
1.关于行内元素和快元素的说明: 根据CSS规范的规定,每一个网页元素都有一个display属性,用于确定该元素的类型,每一个元素都有默认的display属性值,比如div元素,它的默认display ...
- 利用nginx解决cookie跨域
一.写在前面 最近需要把阿里云上的四台服务器的项目迁移到客户提供的新的项目中,原来的四台服务器中用到了一级域名和二级域名.比如aaa.abc.com 和bbb.abc.com 和ccc.abc.com ...
- datalist 分页
Asp.net提供了三个功能强大的列表控件:GridView.DataList和Repeater控件,相对GridView,DataList和Repeater控件具有更高的样式自定义性,很多时候我们喜 ...