【BZOJ 3569】 DZY Loves Chinese II
题目连接:
题解:
先%一发大佬的题解。
考虑一个图,删除一些边以后不连通的条件为,某个联通块与外界所有连边都被删掉,而不只是生成树中一个树边与所以覆盖它的非树边(很容易举出反例)。
那么考虑如何才能判断一个联通块与外界隔断。
先考虑只是一棵树,那么任意割一条边都成立,那么现在我们在这棵树上加上一条边(u,v),我们发现,在(u,v)以外的树边,割一条就成立,但在(u,v)覆盖以内呢?
如图: 
我们发现我们可以把(u,v)与被(u,v)覆盖的任意一条边删掉,但也可以把2向外连出,且被(u,v)覆盖的边给删掉(即(1,2)、(2,3))。当我们把(2)看作一团点时我们可以发现以上条件也是成立的。
以此类推我们可以发现被覆盖的树边删除后不再联通的条件为:1.删除其本身,同时将覆盖其的边删掉;2.删除其本身,将与其一同被覆盖的其他树边删掉。
也就是说,产生新联通块的必要条件为:删掉一条树边的同时,与其具有相同属性的边也被删掉。
那么这个相同属性是什么:覆盖边的属性。我们用一个数来表示覆盖边的属性,也就是说我们删除的集合要满足删除边的属性异或和为0,同时不能为空集!
还是如上图,我们把(1,3)的边用x表示,我们给(2,3)、(1,2),即被覆盖边都打上x的标记,那么我们发现删除这三者中的任意二者都是成立的,因为x这个属性,被gank了两次,也就意味着这个覆盖边的贡献在我们删掉的边之间的联通块(假想块),与覆盖边以外的联通块隔离。
所以我们随机一个数给非树边作为它的属性,那么删边形成新联通的条件就是删边集合中,存在一个子集(不含空集)的属性异或和为0。
代码:
#include "bits/stdc++.h"
using namespace std;
inline int read() {
int s=,k=;char ch=getchar();
while (ch<''|ch>'') ch=='-'?k=-:,ch=getchar();
while (ch>&ch<='') s=s*+(ch^),ch=getchar();
return s*k;
}
const int N=5e5+,mod=1e9;
struct edges{
int v;edges *last;
}edge[N*],*head[N];int cnt=;
inline void push(int u,int v){
edge[++cnt]=(edges){v,head[u]},head[u]=edge+cnt;
}
struct node {
int x,y,val;
}ed[N];
bool vis[N],used[N];int fat[N],val[N];
inline void dfs(int x,int fa){
vis[x]=true;
for (edges *i=head[x];i;i=i->last) if(i->v!=fa&&!vis[i->v]){
fat[i->v]=x;used[i-edge>>]=true;
dfs(i->v,x);
}
}
inline void dfs2(int x,int fa){
for (edges *i=head[x];i;i=i->last) if(fat[i->v]==x){
dfs2(i->v,x);
val[x]^=val[i->v];
ed[i-edge>>].val^=val[i->v];
}
}
int n,m,b[],bin[];
int main() {
srand();
n=read(),m=read();
register int i,j,k;
for (i=;i<=m;++i) ed[i].x=read(),ed[i].y=read(),push(ed[i].x,ed[i].y),push(ed[i].y,ed[i].x);
dfs(,);
for (i=;i<=m;++i) if(!used[i]){
int x=1ll*rand()*rand()%mod+;
ed[i].val=x;
val[ed[i].x]^=x;
val[ed[i].y]^=x;
}
dfs2(,);
int Q=read(),num,x,ans=;
for (i=;i<=;++i) bin[i]=<<i;
while (Q--){
num=read();
memset(b,,sizeof(b));
bool flag=true;
for (i=;i<=num;++i){
x=read()^ans;x=ed[x].val;
for (j=;~j;--j) if(x&bin[j]){
if(b[j]) x^=b[j];
else {
b[j]=x;
for (k=j-;~k;--k) if(b[k]&&(bin[k]&b[j])) b[j]^=b[k];
for (k=j+;j<=;++j) if(b[k]&bin[j]) b[k]^=b[j];
break;
}
}
if(x==) flag=false;
}
ans+=flag;
puts(flag?"Connected":"Disconnected");
}
}
【BZOJ 3569】 DZY Loves Chinese II的更多相关文章
- 【BZOJ 3569】DZY Loves Chinese II 随机化+线性基
用到一个结论——[先建树,再给每个非树边一个权值,每个树边的权值为覆盖他的非树边的权值的异或和,然后如果给出的边存在一个非空子集异或和为0则不连通,否则连通](必须保证每条边的出现和消失只能由自己产生 ...
- 【BZOJ 3569】DZY Loves Chinese II
题面 Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图 ...
- 【BZOJ3563/3569】DZY Loves Chinese II 线性基神题
[BZOJ3563/3569]DZY Loves Chinese II Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以 ...
- 【BZOJ3569】DZY Loves Chinese II
[BZOJ3569]DZY Loves Chinese II 题面 bzoj 题目大意: 给你一张\(N(1\leq N\leq 10^5)\)个点\(M(1\leq M\leq 5\times 10 ...
- 【BZOJ3563/BZOJ3569】DZY Loves Chinese I/II(随机化,线性基)
[BZOJ3563/BZOJ3569]DZY Loves Chinese I/II(随机化,线性基) 题面 搞笑版本 正经版本 题面请自行观赏 注意细节. 题解 搞笑版本真的是用来搞笑的 所以我们来讲 ...
- 【bzoj 3309 】 DZY Loves Math
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0.给定正整数a,b,求 ...
- 【bzoj3569】 DZY Loves Chinese II
http://www.lydsy.com/JudgeOnline/problem.php?id=3569 (题目链接) 题意 给出一个无向图,$Q$组询问,每次询问将原图断掉$C$条边后是否还连通.在 ...
- 【BZOJ 3561】 DZY Loves Math VI
题目: 给定正整数n,m.求 题解: 水题有益身心健康.(博客园的辣鸡数学公式) 其实到这我想强上伯努利数,然后发现$n^2$的伯努利数,emmmmmm 发现这个式子可以算时间复杂度,emmmmm ...
- 【BZOJ 3309】DZY Loves Math
http://www.lydsy.com/JudgeOnline/problem.php?id=3309 \[\sum_{T=1}^{min(a,b)}\sum_{d|T}f(d)\mu(\frac ...
随机推荐
- Nginx实现文件的上传和下载
文件的上传只要保证特殊的地址先到达Nginx,然后通过Nginx指定至指定的服务器即可,目前配置是本机.文件的下载的做法就是把本机的当前目录下面的文件给返回回去. server { ; server_ ...
- C#逻辑面试题汇总【不断更新中】
(1)产生本月的月历,参考样式: 1 2 3 4 5 6 SU MO TU WE TH FR SA 01 02 03 04 05 06 07 08 09 10 11 12 13 14 ...
- (转)Go语言并发模型:使用 context
转载自:https://segmentfault.com/a/1190000006744213 context golang 简介 在 Go http包的Server中,每一个请求在都有一个对应的 g ...
- 第一章 C++概述
第一节 C++语言的发展历史 略 第二节 C++语言的特点 1.C++是一种面向对象的程序设计语言,其中的新技术主要包括: 抽象数据类型 封装和信息隐蔽 以继承和派生方式实现程序的重用 以运算符重载和 ...
- 高性能网络IO模型
同步阻塞式IO开发简单,但在处理IO密集的并发任务时,非常浪费CPU资源,性能低:并且,当一个进程(线程)含有多个套接字上时,同步阻塞式IO会带来问题:因为同步阻塞式IO只支持进程(线程)阻塞在一个套 ...
- SpringMVC SessionAttributes 简述
使用SpringMVC时,我们会发现网络上有关SessionAttributes注解的内容非常少,更多的人甚至推荐你继续用HttpServletRequest中的session管理方法来控制Sessi ...
- GenyMotion 配合 Android Studio 的安装
众所周知,Android Studio 自带的模拟器对内存和CPU消耗都很大却并没有很好的效果,简直是谷歌为了卖手机设计的.而Geny Motion 对机能的要求大大降低,又不会像自带模拟器那么卡.G ...
- 重写equals时,遵守的规定
0 正确的equals方法 public class MyClass { // 主要属性1 private int primaryAttr1; // 主要属性2 private int prima ...
- linux设备驱动之字符设备驱动模型(2)
在上一篇中我们已经了解了字符设备驱动的原理,也了解了应用层调用内核函数的机制,但是我们每次操作设备,都必须首先通过mknod命令创建一个设备文件名,比如说我们要打开u盘,硬盘等这些设备,难道我们还要自 ...
- CoreData的简单使用
一.基础知识: CoreData是对SQLite的封装,使用的时候比较方便,减少对SQL语句的使用. CoreData中的核心对象 NSManagedObjectModel:代表Core Data 的 ...