貌似少了几张图片,不过没有图片也没什么关系的感觉。

最后的究极篇也想出来了,但是貌似找不到题目,好尴尬。。

这个表示的是从n个元素中选取m个元素的方案数。

(PS.组合数求模似乎只用在信息学竞赛和 ACM竞赛等计算机编程设计大赛中……,求在现实中的运用)

可以知道当n,m 取得比较大的时候,组合数可能很大很大 (天文数字?无法度量?)

例如 C(100, 50) = 100891344545564193334812497256, 于是计算机的 64位整数型已经没法阻止它了!C(1000000000, 500000000) ? C( 2^50000, 2^49999 ) ? (Note:这里^表示次方,你能计算得到2的50000次级别的组合数么?它有多少位?)

看起来似乎高精度神马的都无法阻止这个邪恶的函数的急速扩张了……

庆幸的是,在竞赛中我们能够遇到的规模也就只有10^9级别(显然是mod上某个数字K,否则输出的文件那叫一个大啊……),这是多么的小呀呀呀呀!(Note: 相比较2^50000 -_-)

一.           入门篇:我会暴力!

(1)  K = 1: 今天你学数论了么? 难度系数: 0

(2)  (K> 1) n, m <= 1000 (n * n 是可以接受的) 难度系数: 1

递推!

c(n,m) =c(n - 1,m) + c(n – 1, m – 1)

某人: 555555 这个公式太复杂, 记忆不能!

c(5,2) = 10 = c(4,2) + c(4,1) = 6 + 4 ……

我们知道mod操作满足加法性质,即

(a + b) mod c = ( (a mod c) + (b mod c) ) mod c

c(n,m) = ( c(n - 1,m) + c(n – 1, m – 1) ) mod K

证明利用模的定义即可……很简单的

于是如此,我们只需要简单的开上一个 f[ N ][ N ],2个循环搞定!

其实我们遇到的大部分情况需要的 组合数 都可以用这个来搞定~

这里唯一可能被邪恶的其实是 K + K 溢出! 所以如果某个邪恶的题目出到 K = 2*10^9,在某些倒霉的场合会出现2个接近K的int相加,那么就溢出了!不要忘记用unsigned int… (我从来没出过这种题的!真的!)

(3)   n 巨大(10^9 级别), m巨小(10^4级别), k 很小,大约10^9

a)     m<= 1: 今天你学数论了么? 难度系数: 0

b)     m<= 10000     难度系数: 2

可以发现分子分母的项数都少到可以接受!于是我们可以采取各种方式来通过:

i)                   对于每个数字,分解素因子,合并,二分求幂! (你会数论!)

ii)                 对于每个数字,只分解包含于K的素因子,例如K里面有一个素因子3,那么分解的时候我只考虑3呀,因为其他部分显然与3互质……最后统计3的次数即可……

例子:

计算C(10, 3) mod 36

C(10, 3) = (10 * 9 * 8) / (1 * 2 * 3)

对于分母:

1 : ok 逆元(有区别么?)

2: 没法逆元, (2, 36) = 2

3: 没法逆元, (3,36) = 3

为了神马啊!! 还不让人逆元啊!显然是因为邪恶的2和3,如果他们不存在,那么多么美好呀!

于是我开2个变量,记录2,3的次数

对于分子:

10: 里面只有1个2,去掉了2,剩下的部分是 10 / 2 = 5.

9: 里面只有2个3,去掉去掉, 剩下的是 9 / (3^2) = 1.

8: 里面只有3个2,去掉去掉,剩下的是 8 / (2^3) = 1

于是啊,分母我们把剩下的部分乘起来,得到了神马?得到了 和 2,3 因子完全无关的 部分mod 36的值!就是 5 * 1 * 1 = 5了。

接下来,还有分母呢

1: 逆元(其实你可以无视它)

2: 一个2,去掉去掉, 剩下1, 逆元继续是1(继续无视)

3: 一个3,同上

接下来发现,2有几个? 分子有4个,分母1个,所以一共只有4 – 1 = 3个

3有几个? 同上的做法,显然只有1个。

于是呢答案就是:

5 * 1 * 2^3 * 3^1 = 12( mod 36)

解释:

5 -> 分子除了因子2,3的积

1 ->分母除了因子2,3 的逆元的积

2^3 -> 最终统计发现有3个2

3^1 ->最终统计发现有1个3

请好好理解本例子,你会发现这个问题是如此的美妙!

经典例题:

http://acm.fzu.edu.cn/problem.php?pid=2020

c)     m<= n 别想了!我不会!你会了教我!难度系数: -1

二.           基础篇:我会数论!

1)     n,m<= 10^6, K是10^9级别

对于n! 分解素因子,这里就不说了,可以参考各种帖子。

之后保存个数,二分求幂啊啊啊啊啊

2)     n,m<= 10^10, k是素数,并且K 很小(比如几百?)

其实遇到这种情况我都用一个叫Lucas定理的东西。

ni,mi 就是把 n,m分解p进制的第i位的值。

例如:

计算 C(12, 4) mod 7

n = 12  (15)(base_7)

m = 4     (4) (base_7)

为了对齐,我们前面的部分补0

m = 4   (04) (base_7)

于是

Ans = C(5,4) * C(1,0) mod 7= 5 (mod 7)

有人又要问了, 如果mi > ni 怎么办呀?

直接为0!!!!!!!!!

这里不给出证明,证明可以搜索到。同时由于这个应用的区域比较狭窄,显然有更简单,更好理解的算法,于是这里被无视了。

三.           究极篇

n,m <= 10^9, p <= 10^5

是不是怎么看怎么不可做呢?

第一次见到这种题目是不是觉得作者NC了,出个不可做题 >_<

第一次交发现一坨人全部WA,是不是觉得作者的数据搞疵?!!!!

首先要知道,这题其实等价是求:

求完直接合并一个模方程即可。(CRT)

p^c 的规模大约是10^5。

c 不是1,lucas阻止不了它。

n,m太大,因子分解也阻止不了它。

下面介绍我的做法:

假设 p = 3, c = 2,也就是mod 9

假设n = 19

n! = 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * …… * 19

要是可以快速得到 n! 中除掉3 以后 mod 9的结果,那么多好呀!

看3多讨厌,直接砍

type cal( int n) :

n! = [ 1 * 2 * 4 * 5 * 7 * 8 * …  * 16 * 17 * 19 ] * (3 * 6 * 9 * 12 * 15 * 18)= [ 1 * 2 * 4 * 5 * 7 * 8 * …  * 16 * 17* 19 ] * 3^6( 1 * 2 * 3 * 4 * 5 * 6)

然后发现后面的一坨实际上是 cal( n / p) !!!!

再看前半部分,尼玛是以 p^c 为周期的啊!!!

[1 * 2 * 4 * 5 * 7 * 8 ] = [10 * 11 * 13 * 14 * 16 *17 ] = (mod 9)

于是说白了,对于前面的部分,由于周期,都是浮云了

下面是 孤立出来的19

可以知道孤立出来的 长度 不超过 p^c ,于是暴力啊,暴力啊!

于是完美解决n! 中和 p无关的项 mod p^c的值!!!

接下来是分母部分,一模一样,无非多了一个求逆元(因为都和p没关系了,逆元必然存在)

我们来分析一下,这样的复杂度是如何的呢

每次递归,规模变为原来的 1/p

logp N的啊!!!

当然是层数= =

于是问题完美解决!

 
 
 

【转】AC神组合数取模大全的更多相关文章

  1. 组合数取模(lucas定理+CRT合并)(AC)

    #include<bits/stdc++.h> #define re register #define int long long using namespace std; ; inlin ...

  2. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  3. 排列组合+组合数取模 HDU 5894

    // 排列组合+组合数取模 HDU 5894 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 // 思路: // 定好m个人 相邻人之间k个座位 剩下就剩n-( ...

  4. hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...

  5. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

  6. lucas定理解决大组合数取模

    LL MyPow(LL a, LL b) { LL ret = ; while (b) { ) ret = ret * a % MOD; a = a * a % MOD; b >>= ; ...

  7. 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  8. BZOJ_2142_礼物_扩展lucas+组合数取模+CRT

    BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...

  9. 组合数取模&&Lucas定理题集

    题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 ...

随机推荐

  1. 设计模式之观察者模式(php实现)

    github地址:https://github.com/ZQCard/design_pattern /** * 当对象间存在一对多关系时,则使用观察者模式(Observer Pattern). * 比 ...

  2. JAVA中几种常见集合的使用实例

    Java.util.ArrayList(类): *;import java.util.*;public class CollectionTest{//List是一个能包含重复元素的已排序的Collec ...

  3. Elasticsearch 索引实例

    1.简述 ElasticSearch包含了一系列的感念,比如索引(indexing).搜索(search)以及聚合(aggregations),现在我们主要介绍indexing. 在Elasticse ...

  4. Storm sql 简单测试

    准备工作: 1.安装Kafka,启动,以及创建相应的topic 1.启动kafka bin/kafka-server-start.sh config/server.properties > /d ...

  5. win8.1使用WP8SDK出现Windows Phone Emulator无法启动的问题解决方案

    近期在win8.1专业版系统的vs2012上装了wp8SDK 体验一把wp开发的快感 安装sdk过程一切顺利 打完代码之后运行调试 问题来了: 提示如下错误 遂百度之 主要的方法就是两步 1.检查机器 ...

  6. Unbinding $watch() Listeners In AngularJS

    原文: https://www.bennadel.com/blog/2480-unbinding-watch-listeners-in-angularjs.htm ------------------ ...

  7. 2016.6.20 tomcat端口始终被占用

    我在使用tomcat7时,服务开启时,始终提示端口被占用. 但是从进程中又看不到开启的tomcat. 最后在资源监视器中,结束重复开启的tomcat. (注意是资源监视器,刚开始的时候看成管理器,怎么 ...

  8. 转:深度学习斯坦福cs231n 课程笔记

    http://blog.csdn.net/dinosoft/article/details/51813615 前言 对于深度学习,新手我推荐先看UFLDL,不做assignment的话,一两个晚上就可 ...

  9. Android学习(七) Android实现计算器

    前台页面代码,通过线性布局方式实现计算器页面:如图所示 color.xml,自定义颜色values: <?xml version="1.0" encoding="u ...

  10. Laravel之哈希/常用函数/分页

    一.哈希 1.简介Laravel Hash 门面为存储用户密码提供了安全的Bcrypt 哈希算法.如果你正在使用Laravel 应用自带的AuthController 控制器,将会自动为注册和认证使用 ...