SP1043 GSS1 - Can you answer these queries I

题目描述

给出了序列A[1],A[2],…,A[N]。 (a[i]≤15007,1≤N≤50000)。查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j];x≤i≤j≤y}。 给定M个查询,程序必须输出这些查询的结果。

输入输出格式

输入格式:

  • 输入文件的第一行包含整数N。
  • 在第二行,N个数字跟随。
  • 第三行包含整数M。
  • M行跟在后面,其中第1行包含两个数字xi和yi。

输出格式:

您的程序应该输出M查询的结果,每一行一个查询。

不带修改的维护最大子段和,挺裸的,维护四个量就行了。具体参考小白逛公园https://www.cnblogs.com/wangxiaodai/p/9744081.html

code:

#include<iostream>
#include<cstdio>
#define ls(o) o<<1
#define rs(o) o<<1|1
using namespace std;
const int wx=100017;
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0';ch=getchar();}
return sum*f;
}
struct val_tree{
int l,r,sum,lsum,rsum,tot;
#define sum(o) t[o].sum
#define lsum(o) t[o].lsum
#define rsum(o) t[o].rsum
#define tot(o) t[o].tot
}t[wx*4];
int n,m;
int a[wx];
void up(int o){
tot(o)=tot(ls(o))+tot(rs(o));
lsum(o)=max(lsum(ls(o)),tot(ls(o))+lsum(rs(o)));
rsum(o)=max(rsum(rs(o)),tot(rs(o))+rsum(ls(o)));
sum(o)=max(sum(ls(o)),max(sum(rs(o)),rsum(ls(o))+lsum(rs(o))));
}
void build(int o,int l,int r){
t[o].l=l;t[o].r=r;
if(l==r){sum(o)=tot(o)=lsum(o)=rsum(o)=a[l];return;}
int mid=t[o].l+t[o].r>>1;
if(l<=mid)build(ls(o),l,mid);
if(r>mid)build(rs(o),mid+1,r);
up(o);
}
val_tree query(int o,int l,int r){
if(l<=t[o].l&&t[o].r<=r){
return t[o];
}
int mid=t[o].l+t[o].r>>1;
val_tree tmp,tmp1,tmp2;
if(r<=mid)return query(ls(o),l,r);
if(l>mid)return query(rs(o),l,r);
tmp1=query(ls(o),l,r);
tmp2=query(rs(o),l,r);
tmp.tot=tmp1.tot+tmp2.tot;
tmp.lsum=max(tmp1.lsum,tmp1.tot+tmp2.lsum);
tmp.rsum=max(tmp2.rsum,tmp2.tot+tmp1.rsum);
tmp.sum=max(max(tmp1.sum,tmp2.sum),tmp1.rsum+tmp2.lsum);
return tmp;
}
int main(){
n=read();
for(int i=1;i<=n;i++)a[i]=read();
build(1,1,n);
m=read();
for(int i=1;i<=m;i++){
int x,y;
x=read();y=read();
printf("%d\n",query(1,x,y).sum);
}
return 0;
}

线段树 SP1043 GSS1 - Can you answer these queries I的更多相关文章

  1. SP1043 GSS1 - Can you answer these queries I 线段树

    问题描述 LG-SP1043 题解 GSS 系列第一题. \(q\) 个询问,求 \([x,y]\) 的最大字段和. 线段树,维护 \([x,y]\) 的 \(lmax,rmax,sum,val\) ...

  2. SP1043 GSS1 - Can you answer these queries I(猫树)

    给出了序列A[1],A[2],…,A[N]. (a[i]≤15007,1≤N≤50000).查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j]:x≤i≤j≤y}. 给定M ...

  3. [SP1043] GSS1 - Can you answer these queries I

    传送门:>Here< 题意:求区间最大子段和 $N \leq 50000$ 包括多组询问(不需要支持修改) 解题思路 线段树的一道好题 我们可以考虑,如果一组数据全部都是正数,那么问题等同 ...

  4. 线段树 SP1716 GSS3 - Can you answer these queries III

    SP1716 GSS3 - Can you answer these queries III 题意翻译 n 个数,q 次操作 操作0 x y把A_xAx 修改为yy 操作1 l r询问区间[l, r] ...

  5. 线段树 SP2713 GSS4 - Can you answer these queries IV暨 【洛谷P4145】 上帝造题的七分钟2 / 花神游历各国

    SP2713 GSS4 - Can you answer these queries IV 「题意」: n 个数,每个数在\(10^{18}\) 范围内. 现在有「两种」操作 0 x y把区间\([x ...

  6. SP1043 GSS1 - Can you answer these queries I(线段树,区间最大子段和(静态))

    题目描述 给出了序列A[1],A[2],…,A[N]. (a[i]≤15007,1≤N≤50000).查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j]:x≤i≤j≤y} ...

  7. [题解] SPOJ GSS1 - Can you answer these queries I

    [题解] SPOJ GSS1 - Can you answer these queries I · 题目大意 要求维护一段长度为 \(n\) 的静态序列的区间最大子段和. 有 \(m\) 次询问,每次 ...

  8. 线段树【SP1043】GSS1 - Can you answer these queries I

    Description 给出了序列\(A_1,A_2,-,A_n\). \(a_i \leq 15007,1 \leq n \leq 50000\).查询定义如下: 查询\((x,y)=max{a_i ...

  9. GSS1 - Can you answer these queries I(线段树)

    前言 线段树菜鸡报告,stO ZCDHJ Orz,GSS基本上都切完了. Solution 考虑一下用线段树维护一段区间左边连续的Max,右边的连续Max,中间的连续Max还有总和,发现这些东西可以相 ...

随机推荐

  1. Celery-4.1 用户指南: Task(任务)

    任务是构建 celery 应用的基础块. 任务是可以在任何除可调用对象外的地方创建的一个类.它扮演着双重角色,它定义了一个任务被调用时会发生什么(发送一个消息),以及一个工作单元获取到消息之后将会做什 ...

  2. 2015.4.21 SetWindowPos函数用法

    定义:[DllImport("user32.dll")] public static extern bool SetWindowPos(IntPtr hWnd, int hWndl ...

  3. 11-09SQLserver 基础-数据库之汇总练习45题

    设有一数据库,包括四个表:学生表(Student).课程表(Course).成绩表(Score)以及教师信息表(Teacher).四个表的结构分别如表1-1的表(一)~表(四)所示,数据如表1-2的表 ...

  4. LinearLayout线性布局搭配权重属性的使用

    在开发中,我们是通过布局来完成应用界面的搭配的,通过各种布局,我们可以完成各种复杂的界面设计.而LinearLayout也就是我们说的线性布局,这个比较简单而且使用很广泛的一种布局.下面我们通过一个D ...

  5. ie6-ie8不支持opacity,rgba解决方法

    半透明部分设置样式:opacity:0.7在ie9/ie10/ff/chrome/opera/safari显示正常. 但是这样在ie6-ie8中是不支持的,需要加上下面这句话: filter: pro ...

  6. 5-EasyNetQ之Publish(黄亮翻译)

    EasyNetQ支持的最简单的消息模式是发布/订阅.这个模式是一个极好的方法用来解耦消息提供者和消费者.消息发布者只要简单的对世界说,"这里有些事发生" 或者 "我现在有 ...

  7. 【262】pscp命令 实现windows与linux互传文件

    首先将pscp.exe文件放在某个文件夹中 新建*.bat文件 w-wx.bat代码 @echo off pscp.exe -pw l*****h D:\Windows-Linux\Data\* oc ...

  8. JavaScript中常用的函数

    javascript函数一共可分为五类:  ·常规函数  ·数组函数  ·日期函数  ·数学函数  ·字符串函数 1.常规函数  javascript常规函数包括以下9个函数:  (1)alert函数 ...

  9. MSScriptControl详解(可实现在C#等语言中调用JAVASCRIPT代码)

    ScriptControl接口 属性名称 类型 备注 AllowUI BOOL 检测是否允许运行用户的接口元素.如果为False,则诸如消息框之类的界面元素不可见. CodeObject Object ...

  10. 面试题:AOP面向切面编程

    //创建一个与代理对象相关联的InvocationHandler InvocationHandler stuHandler = new MyInvocationHandler<Person> ...