bzoj3684: 大朋友和多叉树(拉格朗日反演+多项式全家桶)
题面
题解
首先你得知道什么是拉格朗日反演->这里
我们列出树的个数的生成函数
\]
\]
我们记\(F(x)=T(x)\),\(G(x)=x-\prod_{i\in D}x^i\),那么有\(G(F(x))=x\)
根据拉格朗日反演,可得
\]
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=5e5+5,P=950009857,g=7,Gi=135715694;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int r[N],O[N],F[N],G[N],inv[N],lim,l,n,m;
void init(R int len){
lim=1,l=0;while(lim<len)lim<<=1,++l;
fp(i,0,lim-1)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
}
void NTT(int *A,int ty){
fp(i,0,lim-1)if(i<r[i])swap(A[i],A[r[i]]);
for(R int mid=1;mid<lim;mid<<=1){
int I=(mid<<1),Wn=ksm(ty==1?g:Gi,(P-1)/I);O[0]=1;
fp(i,1,mid-1)O[i]=mul(O[i-1],Wn);
for(R int j=0;j<lim;j+=I)fp(k,0,mid-1){
int x=A[j+k],y=mul(O[k],A[j+k+mid]);
A[j+k]=add(x,y),A[j+k+mid]=dec(x,y);
}
}
if(ty==-1)for(R int i=0,inv=ksm(lim,P-2);i<lim;++i)A[i]=mul(A[i],inv);
}
void Inv(int *a,int *b,int len){
if(len==1)return b[0]=ksm(a[0],P-2),void();
Inv(a,b,len>>1);static int A[N],B[N];init(len<<1);
fp(i,0,len-1)A[i]=a[i],B[i]=b[i];
fp(i,len,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],mul(B[i],B[i]));
NTT(A,-1);
fp(i,0,len-1)b[i]=dec(add(b[i],b[i]),A[i]);
fp(i,len,lim-1)b[i]=0;
}
void Ln(int *a,int *b,int len){
static int A[N],B[N];
fp(i,1,len-1)A[i-1]=mul(a[i],i);A[len-1]=0;
Inv(a,B,len),init(len<<1);
fp(i,len,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
NTT(A,-1);
fp(i,1,len-1)b[i]=mul(A[i-1],inv[i]);b[0]=0;
fp(i,len,lim-1)b[i]=0;
}
void Exp(int *a,int *b,int len){
if(len==1)return b[0]=1,void();
Exp(a,b,len>>1);static int A[N];
Ln(b,A,len),init(len<<1);
A[0]=dec(a[0]+1,A[0]);
fp(i,1,len-1)A[i]=dec(a[i],A[i]);
fp(i,len,lim-1)A[i]=b[i]=0;
NTT(A,1),NTT(b,1);
fp(i,0,lim-1)b[i]=mul(b[i],A[i]);
NTT(b,-1);
fp(i,len,lim-1)b[i]=0;
}
void ksm(int *a,int *b,int len,int k){
static int A[N];
Ln(a,A,len);
fp(i,0,len-1)A[i]=mul(A[i],k);
Exp(A,b,len);
}
int Lagrange(int *a,int len,int k){
static int A[N],B[N];
Inv(a,A,len),ksm(A,B,len,k);
return mul(B[k-1],inv[k]);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
int len=1;while(len<=n)len<<=1;
inv[0]=inv[1]=1;fp(i,2,len)inv[i]=1ll*(P-P/i)*inv[P%i]%P;
++F[0];while(m--)--F[read()-1];
printf("%d\n",Lagrange(F,len,n));
return 0;
}
bzoj3684: 大朋友和多叉树(拉格朗日反演+多项式全家桶)的更多相关文章
- BZOJ 3684: 大朋友和多叉树 [拉格朗日反演 多项式k次幂 生成函数]
3684: 大朋友和多叉树 题意: 求有n个叶子结点,非叶节点的孩子数量\(\in S, a \notin S\)的有根树个数,无标号,孩子有序. 鏼鏼鏼! 树的OGF:\(T(x) = \sum_{ ...
- 【BZOJ3684】大朋友和多叉树(拉格朗日反演)
题目链接 题意 求满足如下条件的多叉树个数: 1.每一个点的儿子个数在给定的集合 \(S\) 内 2.总的叶子节点树为 \(s\) 儿子之间有顺序关系,但节点是没有标号的. Sol 拉格朗日反演板子题 ...
- loj#6363. 「地底蔷薇」(拉格朗日反演+多项式全家桶)
题面 传送门 题解 肝了一个下午--我老是忘了拉格朗日反演计算的时候多项式要除以一个\(x\)--结果看它推倒简直一脸懵逼-- 做这题首先你得知道拉格朗日反演是个什么东西->这里 请坐稳,接下来 ...
- [BZOJ3684]大朋友和多叉树
设答案为$f_s$,它的生成函数为$\begin{align*}F(x)=\sum\limits_{i=0}^\infty f_ix^i\end{align*}$,则我们有$\begin{align* ...
- BZOJ3684 大朋友和多叉树(多项式相关计算)
设$f(x)$为树的生成函数,即$x^i$的系数为根节点权值为$i$的树的个数.不难得出$f(x)=\sum_{k\in D}f(x)^k+x$我们要求这个多项式的第$n$项,由拉格朗日反演可得$[x ...
- [BZOJ3684][拉格朗日反演+多项式求幂]大朋友和多叉树
题面 Description 我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树.对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的:点权为\(1\)的结点是叶子结 ...
- BZOJ 3684 大朋友和多叉树
BZOJ 3684 大朋友和多叉树 Description 我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树.对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的: ...
- 【bzoj3684】 大朋友和多叉树 生成函数+多项式快速幂+拉格朗日反演
这题一看就觉得是生成函数的题... 我们不妨去推下此题的生成函数,设生成函数为$F(x)$,则$[x^s]F(x)$即为答案. 根据题意,我们得到 $F(x)=x+\sum_{i∈D} F^i(x)$ ...
- [拉格朗日反演][FFT][NTT][多项式大全]详解
1.多项式的两种表示法 1.系数表示法 我们最常用的多项式表示法就是系数表示法,一个次数界为\(n\)的多项式\(S(x)\)可以用一个向量\(s=(s_0,s_1,s_2,\cdots,s_n-1) ...
随机推荐
- 摘之知乎网友...PHYTIN学习
作者:东瓜王链接:https://www.zhihu.com/question/19593179/answer/23746083来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...
- eclipse项目中将普通文件夹转化成资源文件夹
1.点选该文件夹 2.右键属性Properties 3.选择属性:Build Path 4.点选属性:Use as Source Folder ......等待变成资源文件夹 参考更详细的: ecl ...
- JAVA方法中的参数用final来修饰的效果
很多人都说在JAVA中用final来修饰方法参数的原因是防止方法参数在调用时被篡改,其实也就是这个原因,但理解起来可能会有歧义,我们需要注意的是,在final修饰的方法参数中,如果修饰的是基本类型,那 ...
- java中内部类的讲解
java中有一个内部类的概念,由于之前一直比较忙,没有单独拿出时间总结一下,今天我就把内部类的相关知识进行一下汇总,如果有不足之处,欢迎批评指正. 1)java内部类的概念. 在一个类的的 ...
- spring学习十三
1: RESTful URL : 域和端口 / servlet / 资源 / 参数id 2: 静态资源访问处理? 采用RESTful架构后,需要将web.xml中控制器拦截的请求设置为/,这样会将c ...
- 【OpenCV】基于图像处理和模式识别的火灾检测方法
学期末一直忙考试,大作业,很久没来CSDN耕耘了... 虽然考试都结束了,手头还是累积了不少活儿要补,不多写了,晒个小项目,之前一直做的,后来当做模式识别课程的大作业交了. 大体框架如下: 还是之前的 ...
- 如何通过outline为SQL语句指定执行计划
创建测试表 以用户jyu连接,创建测试表 SQL> conn jyu/jyu; Connected. SQL> create table t (id number, name varcha ...
- Oracle的REGEXP_REPLACE函数简单用法
转载:http://blog.csdn.net/itmyhome1990/article/details/50380718
- 10-23C#基础--结构体
结构体: 1.定义:封装小型相关变量组,里面可以放一系列的变量: 就是一个变量组,将一组变量放在一起,结构体一般定义在Main函数上面,位于Class下面,作为一个类:一般情况Struct定义在Mai ...
- cygwin选择安装包选项搭建NDK开发环境/配置cygwin的root权限
9.Search是可以输入你要下载的包的名称,能够快速筛选出你要下载的包.那四个单选按钮是选择下边树的样式,默认就行,不用动.View默认是Category,建议改成full显示全部包再查,省的一些包 ...