洛谷P4072 [SDOI2016]征途(斜率优化)
推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$
$$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum _{i=1}^m x_i+sum_n^2$$
$$s^2*m^2=m*\sum _{i=1}^m x_i^2+(sum_n-\sum _{i=1}^m x_i)^2-(\sum _{i=1}^m x_i)^2$$
然后因为$sum_n$和$\sum _{i=1}^m x_i$两项是定值,且值相等,所以$$s^2*m^2=m*\sum _{i=1}^m x_i^2-(\sum _{i=1}^m x_i)^2$$
我们发现$(\sum _{i=1}^m x_i)^2$是一个定值,那么我们的目的就是让$\sum _{i=1}^m x_i^2$最小
总算扯到dp上了不容易啊……
我们设$dp[i][l]$表示前$i$条路$l$天走,最小的\sum _{a=1}^i x_a^2是多少,那么有如下的状态转移方程$$dp[i][l]=min\{dp[j][l-1]+(sum[i]-sum[j])^2\}$$
然后考虑斜率优化(以下省略$l$这一维)
假设$j$比$k$更优,则有$$dp[j]+(sum[i]-sum[j])^2<dp[k]+(sum[i]-sum[k])^2$$
展开,移项$$dp[j]+sum[j]^2-dp[k]-sum[k]^2<2*sum[i]*sum[j]-2*sum[i]*sum[k]$$
$$\frac{dp[j]+sum[j]^2-dp[k]-sum[k]^2}{sum[j]-sum[k]}<2*sum[i]$$
然后就可以上斜率优化了
ps:注意当$l$为$0$的时候dp要都初始化为$sum[i]^2$
//minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
ll sum[N],sp[N],dp[N];int n,m,h,t,q[N],r;
inline ll Y(int i){return sp[i]+sum[i]*sum[i];}
inline double slope(int j,int k){
return (Y(j)-Y(k))*1.0/(sum[j]-sum[k]);
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=;i<=n;++i)
sum[i]=read()+sum[i-],sp[i]=sum[i]*sum[i];
for(int a=;a<m;++a){
h=t=;q[]=a;
for(int i=a+;i<=n;++i){
while(h<t&&slope(q[h],q[h+])<*sum[i]) ++h;
dp[i]=sp[q[h]]+(sum[i]-sum[q[h]])*(sum[i]-sum[q[h]]);
while(h<t&&slope(q[t],q[t-])>slope(q[t-],i)) --t;q[++t]=i;
}
for(int i=;i<=n;++i) sp[i]=dp[i];
}
printf("%lld\n",-sum[n]*sum[n]+m*dp[n]);
return ;
}
洛谷P4072 [SDOI2016]征途(斜率优化)的更多相关文章
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...
- 洛谷P4072 [SDOI2016]征途(带权二分,斜率优化)
洛谷题目传送门 一开始肯定要把题目要求的式子给写出来 我们知道方差的公式\(s^2=\frac{\sum\limits_{i=1}^{m}(x_i-\overline x)^2}{m}\) 题目要乘\ ...
- [洛谷P4072] SDOI2016 征途
问题描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路 ...
- 洛谷4072 SDOI2016征途 (斜率优化+dp)
首先根据题目中给的要求,推一下方差的柿子. \[v\times m^2 = m\times \sum x^2 - 2 \times sum \times sum +sum*sum \] 所以\(ans ...
- bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)
题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...
- BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]
4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...
- bzoj4518[Sdoi2016]征途 斜率优化dp
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1657 Solved: 915[Submit][Status] ...
- 【BZOJ4518】[Sdoi2016]征途 斜率优化
[BZOJ4518][Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除 ...
- 【bzoj4518】[Sdoi2016]征途 斜率优化dp
原文地址:http://www.cnblogs.com/GXZlegend/p/6812435.html 题目描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界 ...
随机推荐
- java中如何将OutputStream转换为InputStream
在不需要文件生成的情况下,直接将输出流转换成输入流.可使用下面的三种方法: 如果你曾经使用java IO编程,你会很快碰到这种情况,某个类在OutputStream上创建数据而你需要将它发送给某个需要 ...
- PD中更改显示Name还是Code的设置
菜单->Tool->Model Options->Name Convention->右侧display中选择显示name还是code. 此外,在16版中,还可以通过Tool-D ...
- 如何Catalog磁带库中的备份集
在NBU备份的环境中,可以使用以下步骤来Catalog磁带库中的备份集. 1. 查找需要Catalog的备份集名称 可以使用两种方法查找Oracle备份集. 方法一是使用RMAN的list命令查找,例 ...
- java 多线程系列基础篇(十)之线程优先级和守护线程
1. 线程优先级的介绍 java 中的线程优先级的范围是1-10,默认的优先级是5.“高优先级线程”会优先于“低优先级线程”执行. java 中有两种线程:用户线程和守护线程.可以通过isDaemon ...
- 问题:oracle 字符串转换成日期;结果:[oracle] to_date() 与 to_char() 日期和字符串转换
to_date("要转换的字符串","转换的格式") 两个参数的格式必须匹配,否则会报错. 即按照第二个参数的格式解释第一个参数. to_char(日期,& ...
- LaTex: 表格单元格内容 分行显示/换行
问题:如何同时让表格同一行一个单元格的文字能垂直居中?比如说文字超长超出页面范围需要分行显示 答:(来源于smth) 方案一: \newcommand{\tabincell}[2]{\begin{ta ...
- OpenCV 官方工程报错(1) Couldn't load mixed_sample from loader
openCV/OpenCV-android-sdk/samples/tutorial-2-mixedprocessing 工程 - ::): Trying to get library list - ...
- 框架之 hibernate之二
1. Hibernate持久化对象的状态 2. Hibernate的一级缓存 3. Hibernate操作持久化对象的方法 4. Hibernate的基本查询 Hibernate的持久化类 什么是持久 ...
- __get(),__set(),__isset(),__unset()
__get(),__set(),__isset(),__unset() 在给不可访问属性赋值时,__set()会被调用读取不可访问属性的值时,__get()会被调用 当对不可访问属性调用isset() ...
- 将字符串str1复制为字符串str2的三种方法
1.自己编写函数,将两个字符串进行复制 #include<iostream> using namespace std; int main(){ char str1[]="I lo ...