一、噪音

  • 噪音产生的因素:可能是测量仪器的误差、也可能是人为误差、或者测试方法有问题等;
  • 降噪作用:方便数据的可视化,使用样本特征更清晰;便于算法操作数据;
  • 具体操作:从 n 维降到 k 维,再讲降维后的数据集升到 n 维,得到的新的数据集为去燥后的数据集;
  • 降维:X_reduction = pca.transform ( X )
  • 升维:X_restore = pca.inverse_transform ( X_reduction ),数据集 X_restore 为去燥后的数据集;

二、实例

 1)例一

  • 模拟并绘制样本信息

    import numpy as np
    import matplotlib.pyplot as plt X = np.empty((100, 2))
    X[:, 0] = np.random.uniform(0., 100, size=100)
    X[:, 1] = 0.75 * X[:, 0] + 3. + np.random.normal(0, 5, size=100) plt.scatter(X[:, 0], X[:, 1])
    plt.show()

  1. 实际上,样本的状态看似在直线上下抖动式的分布,其实抖动的距离就是噪音;
  • 使用 PCA 降维,达到降噪的效果

  1. 操作:数据降维后,再升到原来维度;
  2. inverse_transform(低维数据):将低维数据升为高维数据
  3. from sklearn.decomposition import PCA
    
    pca = PCA(n_components=1)
    pca.fit(X)
    X_reduction = pca.transform(X) # inverse_transform(低维数据):将低维数据升为高维数据
    X_restore = pca.inverse_transform(X_reduction) plt.scatter(X_restore[:,0], X_restore[:,1])
    plt.show()

 2)例二(手写识别数字数据集)

  • 加载数据集(人为加载噪音:noisy_digits)
    from sklearn import datasets
    
    digits = datasets.load_digits()
    X = digits.data
    y = digits.target # 在数据集 X 的基础上创建一个带噪音的数据集
    noisy_digits = X + np.random.normal(0, 4, size=X.shape)
  • 从带有噪音的数据集 noisy_digits 中提出示例数据集  example_digits
    example_digits = noisy_digits[y==0,:][:10]
    for num in range(1, 10):
    X_num = noisy_digits[y==num,:][:10]
    # np.vstack([array1, array2]):将两个矩阵在水平方向相加,增加列数;
    # np.hstack([array1, array2]):将两矩阵垂直相加,增加行数;
    example_digits = np.vstack([example_digits, X_num]) example_digits.shape
    # 输出:(100, 64)
  • 绘制示例数据集 example_digits(带噪音)
    def plot_digits(data):
    fig, axes = plt.subplots(10, 10, figsize=(10,10),
    subplot_kw = {'xticks':[], 'yticks':[]},
    gridspec_kw=dict(hspace=0.1, wspace=0.1))
    for i, ax in enumerate(axes.flat):
    ax.imshow(data[i].reshape(8, 8),
    cmap='binary', interpoltion='nearest',
    clim=(0, 16)) plt.show() plot_digits(example_digits)

  • 降噪数据集 example_digits
    # 如果噪音比较多,保留较少信息(此例中只保留 50% 的信息)
    pca = PCA(0.5)
    pca.fit(noisy_digits) # 查看最终的样本维度
    pca.n_components_
    # 输出:12 # 1)降维:将数据集 example_digits 降维,得到数据集 components
    components = pca.transform(example_digits) # 2)升维:将数据集升到原来维度(100, 64)
    filtered_digits = pca.inverse_transform(components) # 绘制去燥后的数据集 filtered_digits
    plot_digits(filtered_digits)

机器学习:PCA(降噪)的更多相关文章

  1. [机器学习]-PCA数据降维:从代码到原理的深入解析

    &*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Prin ...

  2. 机器学习--PCA降维和Lasso算法

    1.PCA降维 降维有什么作用呢?数据在低维下更容易处理.更容易使用:相关特征,特别是重要特征更能在数据中明确的显示出来:如果只有两维或者三维的话,更便于可视化展示:去除数据噪声降低算法开销 常见的降 ...

  3. 机器学习--PCA算法代码实现(基于Sklearn的PCA代码实现)

    一.基于Sklearn的PCA代码实现 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets ...

  4. [机器学习 ]PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做

    PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做 今天自己实现PCA,从网上看文章的时候,发现有的文章没有搞清楚把SVD(奇异值分解)实现和EVD(特征值分解) ...

  5. 机器学习(4)——PCA与梯度上升法

    主成分分析(Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维 通过降维,可以发现更便于人类理解的特征 其他应用:可视化.去噪 通过映射,我们可以 ...

  6. Python 机器学习实战 —— 无监督学习(上)

    前言 在上篇<Python 机器学习实战 -- 监督学习>介绍了 支持向量机.k近邻.朴素贝叶斯分类 .决策树.决策树集成等多种模型,这篇文章将为大家介绍一下无监督学习的使用.无监督学习顾 ...

  7. 131.008 Unsupervised Learning - Principle component Analysis |PCA | 非监督学习 - 主成分分析

    @(131 - Machine Learning | 机器学习) PCA是一种特征选择方法,可将一组相关变量转变成一组基础正交变量 25 PCA的回顾和定义 Demo: when to use PCA ...

  8. PCA主成分分析 ICA独立成分分析 LDA线性判别分析 SVD性质

    机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点 ...

  9. 【笔记】使用PCA对数据进行降噪(理解)

    使用PCA对数据进行降噪(使用手写数字实例) (在notebook中) 加载库并制作虚拟的数据并进行绘制 import numpy as np import matplotlib.pyplot as ...

  10. < AlexNet - 论文研读个人笔记 >

    Alexnet - 论文研读个人笔记 一.论文架构 摘要: 简要说明了获得成绩.网络架构.技巧特点 1.introduction 领域方向概述 前人模型成绩 本文具体贡献 2.The Dataset ...

随机推荐

  1. 模型融合之blending和stacking

    1. blending 需要得到各个模型结果集的权重,然后再线性组合. """Kaggle competition: Predicting a Biological Re ...

  2. 微软官网的office外接程序开发

    链接地址:https://msdn.microsoft.com/zh-cn/library/fp161347.aspx

  3. Mysql中in语句排序

    这只是Mysql语句的写法,不同数据库写法不太一样, ,,,) order by instr('1,11115,11140,11135',id); 如果不使用order by,in语句查询出来的顺序是 ...

  4. sql server deadlock problem

    https://www.red-gate.com/simple-talk/sql/learn-sql-server/how-to-track-down-deadlocks-using-sql-serv ...

  5. linux基础(10)-导航菜单

    导航菜单实战 例:编写一个shell脚本,包含多个菜单,其中需要一个退出选项:可单选也可多选:根据序号选择后,显示所选菜单名称. #!/bin/bash ####################### ...

  6. nova instance启动中的同步与异步

    instance create:nova/api/servers.create -- self.compute_api.create -- self.compute_task_api.build_in ...

  7. js的深拷贝特别注意this的深拷贝

    原生的,jquery的extend,和angular的copy 我们深拷贝的根本原因是为了不改变原来对象的值. <script type="text/javascript"& ...

  8. Composer安装php插件包中有哪些坑

    Composer安装php插件包中有哪些坑 一.总结 一句话总结:不要盲从扩展官方的composer安装命令,有时候也会出错 我们经常要往现有的项目中添加扩展包,有时候因为文档的错误引导,如下图来自 ...

  9. SSIS之序列容器

    序列容器是一种十分简单,但使用非常广泛的容器,它可以对控制流的任务流组件进行结构化处理,把一些业务相关的任务组件,放到一个序列容器中,使整个包看起来更加整洁.美观,就如同我们家里的书柜.衣柜似的,把不 ...

  10. js设计模式理解干货

    构造函数本身就是一个函数,只不过该函数是出于创建对象的目的而定义的. 创建Object实例的两种方式: new 操作符 var person = new Object(); person.name = ...