POJ3417Network
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 5311 | Accepted: 1523 |
Description
Yixght is a manager of the company called SzqNetwork(SN). Now she's very worried because she has just received a bad news which denotes that DxtNetwork(DN), the SN's business rival, intents to attack the network of SN. More unfortunately, the original network of SN is so weak that we can just treat it as a tree. Formally, there are N nodes in SN's network, N-1 bidirectional channels to connect the nodes, and there always exists a route from any node to another. In order to protect the network from the attack, Yixght builds M new bidirectional channels between some of the nodes.
As the DN's best hacker, you can exactly destory two channels, one in the original network and the other among the M new channels. Now your higher-up wants to know how many ways you can divide the network of SN into at least two parts.
Input
The first line of the input file contains two integers: N (1 ≤ N ≤ 100 000), M (1 ≤ M ≤ 100 000) — the number of the nodes and the number of the new channels.
Following N-1 lines represent the channels in the original network of SN, each pair (a,b) denote that there is a channel between node a and node b.
Following M lines represent the new channels in the network, each pair (a,b) denote that a new channel between node a and node b is added to the network of SN.
Output
Output a single integer — the number of ways to divide the network into at least two parts.
Sample Input
4 1
1 2
2 3
1 4
3 4
Sample Output
3
Source
从链的情况开始,红色的边为非树边。首先看1--2这条边,没有任何非树边覆盖,所以要删这条边,
你删任何一条树边都可以,所以这条边对答案的贡献是m。再看4--5这条边,被一条非树边覆盖,如果
删去这条边并且再删去一条非树边,想要使图不连通,只能删覆盖它的非树边,所以当只有一条非树边
覆盖这条边时,这条边对答案的贡献是1。再看2--3这条边,如果删去这条边,想要使图不连通,你删哪条
非树边都是没有用的,图仍会连通。对答案产生贡献的树边的条件是,如果没有被非树边覆盖,产生的
贡献是m,如果被一条非树边覆盖,产生的贡献就是1,即删掉覆盖它的非树边,如果被2及其以上的非树
边覆盖,对答案没有贡献,你删那一条非树边图仍然连通。
好了,我们已经讨论完答案的产生,在说明怎样实现。
进行树上差分来实现每一条树边被几条非树边覆盖。
当一条非树边的端点为u,v时,查分数组dp[u]++,dp[v]++,dp[lca(u,v)]-=2.
然后在dfs一遍求差分数组的后缀和,dp[i]表示i和它父亲相连的这条边被几条非树边覆盖。
最后统计答案即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 100002
using namespace std; int n,m,sumedge,ans;
int head[maxn],top[maxn],deep[maxn],dad[maxn],size[maxn],dp[maxn]; struct Edge{
int x,y,nxt;
Edge(int x=,int y=,int nxt=):
x(x),y(y),nxt(nxt){}
}edge[maxn<<]; void add(int x,int y){
edge[++sumedge]=Edge(x,y,head[x]);
head[x]=sumedge;
} void dfs(int x){
size[x]=;deep[x]=deep[dad[x]]+;
for(int i=head[x];i;i=edge[i].nxt){
int v=edge[i].y;
if(v==dad[x])continue;
dad[v]=x;
dfs(v);
size[x]+=size[v];
}
} void dfs_(int x){
int s=;
if(!top[x])top[x]=x;
for(int i=head[x];i;i=edge[i].nxt){
int v=edge[i].y;
if(v!=dad[x]&&size[v]>size[s])s=v;
}
if(s){
top[s]=top[x];
dfs_(s);
}
for(int i=head[x];i;i=edge[i].nxt){
int v=edge[i].y;
if(v!=dad[x]&&v!=s)dfs_(v);
}
} int lca(int x,int y){
for(;top[x]!=top[y];){
if(deep[top[x]]>deep[top[y]])swap(x,y);
y=dad[top[y]];
}
if(deep[x]>deep[y])swap(x,y);
return x;
} void DP(int x){
for(int i=head[x];i;i=edge[i].nxt){
int v=edge[i].y;
if(v==dad[x])continue;
DP(v);
dp[x]+=dp[v];
}
} int main(){
scanf("%d%d",&n,&m);
for(int i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
dfs();dfs_();
for(int i=;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
dp[x]++;dp[y]++;
dp[lca(x,y)]-=;
}
DP();
for(int i=;i<=n;i++){
if(dp[i]==)ans+=m;
else if(dp[i]==)ans++;
//cout<<dp[i]<<endl;
}
cout<<ans<<endl;
return ;
}
POJ3417Network的更多相关文章
- poj3417Network【LCA】【树形DP】
Yixght is a manager of the company called SzqNetwork(SN). Now she's very worried because she has jus ...
- POJ3417Network(LCA+树上查分||树剖+线段树)
Yixght is a manager of the company called SzqNetwork(SN). Now she's very worried because she has jus ...
随机推荐
- extendgcd模板
看了数论第一章,终于搞懂了扩展欧几里德,其实就是普通欧几里德的逆推过程. // ax+by = gcd(a,b) ->求解x,y 其中a,b不全为0,可以为负数// 复杂度:O(log2a)vo ...
- full stack on the road
Full Stack, I'm coming. 有人说全栈只是个理想情况,但我不这么认为,因为好多思想是想通的, 比如 OO.函数式编程.设计模式... 也有人说搞全栈的人样样普通,可是为嘛我在学习j ...
- POJ 2092 Grandpa is Famous【水---找出现第二多的数】
链接: http://poj.org/problem?id=2092 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=27454#probl ...
- greenlet和gevent模块的区别?
协程是一中多任务实现方式,它不需要多个进程或线程就可以实现多任务. yield能实现协程,不过实现过程不易于理解,greenlet是在这方面做了改进,通过switch. greenlet可以实现协程, ...
- Android底部菜单栏+顶部菜单
底部菜单栏+顶部菜单(wechat)demo http://blog.csdn.net/evankaka/article/details/44121457 底部菜单demo http://blog.c ...
- RLearning第1弹:初识R语言
R作为一种统计分析软件,是集统计分析与图形显示于一体的.体积小.开源.很强的互动性.自从学了R本人就很少再用matlab了... 一.R语言由函数和赋值构成. R使用<-(最好养成使用习惯),而 ...
- python发布包流程
1.新建文件夹suba和subb,文件夹下新建__init__.py,内容可以为空 2.suba内新建文件aa.py bb.py 3.subb内新建文件cc.py dd.py 4.setup.py文件 ...
- CentOS取消屏幕保护自动锁屏功能
CentOS系统在用户闲置一段时间(默认为5分钟)后,会启动屏幕保护程序(默认的屏保为黑屏),并要求重新输入密码才能回到原来的桌面. 设置屏幕保护:System -> Preferences - ...
- Hadoop Pig
Pig包括两部分: 用于描述数据流的语言,称为Pig Latin. 用于执行Pig Latin程序的执行环境,当前有两个环境:单JVM中的本地执行环境和Hadoop集群上的分布式执行环境. Pig内部 ...
- 每天一个Linux命令(5)rm命令
rm命令可以删除一个目录中的一个或多个文件或目录,也可以将某个目录及其下属的所有文件及其子目录均删除掉.对于链接文件,只是删除整个链接文件,而原有文件保持不变. 注意:使用rm命令要格外小心.因为一旦 ...