前言

\(WQS\)二分听起来是个很难的算法,其实学起来也并不是那么难。

适用范围

在某些题目中,会对于某个取得越多越优的物品,限定你最多选择\(k\)个,问你能得到的最优答案。

例如这道题目:【CF739E】Gosha is hunting

这些题目一般都可以通过枚举选择的物品个数并\(O(n)DP\)来做到\(O(nk)\)。

但如果随着选择物品个数的增加,得到贡献的斜率不递增的,我们就可以用\(WQS\)二分,来将\(O(nk)\)的时间复杂度优化为\(O(nlogn)\)。

大致思想

\(WQS\)二分的核心思想其实非常简单。

既然原来选得越多越优,那么我们可以给选择一个物品增加一个代价\(C\)(\(C\)可以拿来二分),由于总贡献增长得越来越慢,所以最后肯定会形成一个单峰函数,然后我们就可以通过 \(DP\)等方式 来求解出此时的最优答案以及最优答案选择的物品个数,并根据选择的物品个数来更新\(C\)的值。

这样就变成\(O(nlogn)\)了。

最后的答案就是\(f_n+k*C\)(注意,不能写成\(f_n+mid*C\))。

后记

关于例题,文中提到的【CF739E】Gosha is hunting一题就是 \(WQS\)二分 一道比较经典的题目,感兴趣的可以自己去看一看、做一做。

【POJ1160】Post Office其实也是一道\(WQS\)二分的入门题,也是值得一做的。

【POJ1160】Post Office 的题解可以参考博客 【HHHOJ】NOIP模拟赛 捌 解题报告的\(T2\)。

WQS二分学习笔记的更多相关文章

  1. wqs二分 学习笔记

    wqs二分学习笔记 wqs二分适用题目及理论分析 wqs二分可以用来解决这类题目: 给你一个强制要求,例如必须\(n\)条白边,或者划分成\(n\)段之类的,然后让你求出最大(小)值.但是需要满足图像 ...

  2. [总结] wqs二分学习笔记

    论文 提出问题 在某些题目中,强制规定只能选 \(k\) 个物品,选多少个和怎么选都会影响收益,问最优答案. 算法思想 对于上述描述的题目,大部分都可以通过枚举选择物品的个数做到 \(O(nk^2)\ ...

  3. dp凸优化/wqs二分学习笔记(洛谷4383 [八省联考2018]林克卡特树lct)

    qwq 安利一个凸优化讲的比较好的博客 https://www.cnblogs.com/Gloid/p/9433783.html 但是他的暴力部分略微有点问题 qwq 我还是详细的讲一下这个题+这个知 ...

  4. p2619 [国家集训队2]Tree I [wqs二分学习]

    分析 https://www.cnblogs.com/CreeperLKF/p/9045491.html 反正这个博客看起来很nb就对了 但是不知道他在说啥 实际上wqs二分就是原来的值dp[x]表示 ...

  5. 一篇自己都看不懂的CDQ分治&整体二分学习笔记

    作为一个永不咕咕咕的博主,我来更笔记辣qaq CDQ分治 CDQ分治的思想还是比较简单的.它的基本流程是: \(1.\)将所有修改操作和查询操作按照时间顺序并在一起,形成一段序列.显然,会影响查询操作 ...

  6. CDQ分治与整体二分学习笔记

     CDQ分治部分 CDQ分治是用分治的方法解决一系列类似偏序问题的分治方法,一般可以用KD-tree.树套树或权值线段树代替. 三维偏序,是一种类似LIS的东西,但是LIS的关键字只有两个,数组下标和 ...

  7. 决策单调性&wqs二分

    其实是一个还算 trivial 的知识点吧--早在 2019 年我就接触过了,然鹅当时由于没认真学并没有把自己学懂,故今复学之( 1. 决策单调性 引入:在求解 DP 问题的过程中我们常常遇到这样的问 ...

  8. 「学习笔记」wqs二分/dp凸优化

    [学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...

  9. [学习笔记]凸优化/WQS二分/带权二分

    从一个题带入:[八省联考2018]林克卡特树lct——WQS二分 比较详细的: 题解 P4383 [[八省联考2018]林克卡特树lct] 简单总结和补充: 条件 凸函数,限制 方法: 二分斜率,找切 ...

随机推荐

  1. hdu6055(求正方形个数)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6055 题意: 给出 n 组坐标 x, y, 输出其中的正多边形个数 . 其中 x, y 均为整数. ...

  2. jmeter-CSV Data Set Config

    在使用Jemeter测试的时候,往往需要参数化用户名,密码以到达到多用户使用不同的用户名密码登录的目的.这个时候我们就可以使用CSV Data Set Config实现参数化登录: 首先通过Test ...

  3. > Task :app:transformDexArchiveWithExternalLibsDexMergerForDebug FAILED

    > Task :app:transformDexArchiveWithExternalLibsDexMergerForDebug FAILED D8: Cannot fit requested ...

  4. 洛谷P4113 [HEOI2012]采花

    题目描述 萧薰儿是古国的公主,平时的一大爱好是采花. 今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花. 花园足够大,容纳了n朵花,花有c种颜色(用整数1-c表示),且花是排成一排的,以便于 ...

  5. 去除 Git 安装后的右键菜单

    64位 windows 8.1 安装 Git 后,右键菜单多了3个选项(Git Init Here,Git Gui, Git Bash),但是用不着,需要删掉.方法如下: 1.在 CMD 中进入 Gi ...

  6. leetcode--Learn one iterative inorder traversal, apply it to multiple tree questions (Java Solution)

    will show you all how to tackle various tree questions using iterative inorder traversal. First one ...

  7. ACdream 1216——Beautiful People——————【二维LIS,nlogn处理】

    Beautiful People Special Judge Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (J ...

  8. PowerShell 操作 OFFICE

    UiPath操作Office软件的方式,这里说一下用PowerShell调用Office的COM组件的方式 老生常谈~每个程序员都要至少掌握一门脚本编程语言... EXCEL: $excel = Ne ...

  9. KBEngine warring项目源码阅读(一) 项目简介和注册

    首先介绍下warring项目,是kbe自带的一个演示示例,大部分人了解kbe引擎也是从warring项目开始的. 项目地址:https://github.com/kbengine/kbengine_u ...

  10. bootstrapValidator 如何重新启用提交按钮

    bootstrapValidator 使用中,由于字段检查等原因,致使提交按钮失效.如何重新启用提交按钮呢? 下面一句代码可以实现启用提交按钮: $('#loginForm').bootstrapVa ...