WQS二分学习笔记
前言
\(WQS\)二分听起来是个很难的算法,其实学起来也并不是那么难。
适用范围
在某些题目中,会对于某个取得越多越优的物品,限定你最多选择\(k\)个,问你能得到的最优答案。
例如这道题目:【CF739E】Gosha is hunting。
这些题目一般都可以通过枚举选择的物品个数并\(O(n)DP\)来做到\(O(nk)\)。
但如果随着选择物品个数的增加,得到贡献的斜率是不递增的,我们就可以用\(WQS\)二分,来将\(O(nk)\)的时间复杂度优化为\(O(nlogn)\)。
大致思想
\(WQS\)二分的核心思想其实非常简单。
既然原来选得越多越优,那么我们可以给选择一个物品增加一个代价\(C\)(\(C\)可以拿来二分),由于总贡献增长得越来越慢,所以最后肯定会形成一个单峰函数,然后我们就可以通过 \(DP\)等方式 来求解出此时的最优答案以及最优答案选择的物品个数,并根据选择的物品个数来更新\(C\)的值。
这样就变成\(O(nlogn)\)了。
最后的答案就是\(f_n+k*C\)(注意,不能写成\(f_n+mid*C\))。
后记
关于例题,文中提到的【CF739E】Gosha is hunting一题就是 \(WQS\)二分 一道比较经典的题目,感兴趣的可以自己去看一看、做一做。
【POJ1160】Post Office其实也是一道\(WQS\)二分的入门题,也是值得一做的。
【POJ1160】Post Office 的题解可以参考博客 【HHHOJ】NOIP模拟赛 捌 解题报告的\(T2\)。
WQS二分学习笔记的更多相关文章
- wqs二分 学习笔记
wqs二分学习笔记 wqs二分适用题目及理论分析 wqs二分可以用来解决这类题目: 给你一个强制要求,例如必须\(n\)条白边,或者划分成\(n\)段之类的,然后让你求出最大(小)值.但是需要满足图像 ...
- [总结] wqs二分学习笔记
论文 提出问题 在某些题目中,强制规定只能选 \(k\) 个物品,选多少个和怎么选都会影响收益,问最优答案. 算法思想 对于上述描述的题目,大部分都可以通过枚举选择物品的个数做到 \(O(nk^2)\ ...
- dp凸优化/wqs二分学习笔记(洛谷4383 [八省联考2018]林克卡特树lct)
qwq 安利一个凸优化讲的比较好的博客 https://www.cnblogs.com/Gloid/p/9433783.html 但是他的暴力部分略微有点问题 qwq 我还是详细的讲一下这个题+这个知 ...
- p2619 [国家集训队2]Tree I [wqs二分学习]
分析 https://www.cnblogs.com/CreeperLKF/p/9045491.html 反正这个博客看起来很nb就对了 但是不知道他在说啥 实际上wqs二分就是原来的值dp[x]表示 ...
- 一篇自己都看不懂的CDQ分治&整体二分学习笔记
作为一个永不咕咕咕的博主,我来更笔记辣qaq CDQ分治 CDQ分治的思想还是比较简单的.它的基本流程是: \(1.\)将所有修改操作和查询操作按照时间顺序并在一起,形成一段序列.显然,会影响查询操作 ...
- CDQ分治与整体二分学习笔记
CDQ分治部分 CDQ分治是用分治的方法解决一系列类似偏序问题的分治方法,一般可以用KD-tree.树套树或权值线段树代替. 三维偏序,是一种类似LIS的东西,但是LIS的关键字只有两个,数组下标和 ...
- 决策单调性&wqs二分
其实是一个还算 trivial 的知识点吧--早在 2019 年我就接触过了,然鹅当时由于没认真学并没有把自己学懂,故今复学之( 1. 决策单调性 引入:在求解 DP 问题的过程中我们常常遇到这样的问 ...
- 「学习笔记」wqs二分/dp凸优化
[学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...
- [学习笔记]凸优化/WQS二分/带权二分
从一个题带入:[八省联考2018]林克卡特树lct——WQS二分 比较详细的: 题解 P4383 [[八省联考2018]林克卡特树lct] 简单总结和补充: 条件 凸函数,限制 方法: 二分斜率,找切 ...
随机推荐
- hdu6055(求正方形个数)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6055 题意: 给出 n 组坐标 x, y, 输出其中的正多边形个数 . 其中 x, y 均为整数. ...
- jmeter-CSV Data Set Config
在使用Jemeter测试的时候,往往需要参数化用户名,密码以到达到多用户使用不同的用户名密码登录的目的.这个时候我们就可以使用CSV Data Set Config实现参数化登录: 首先通过Test ...
- > Task :app:transformDexArchiveWithExternalLibsDexMergerForDebug FAILED
> Task :app:transformDexArchiveWithExternalLibsDexMergerForDebug FAILED D8: Cannot fit requested ...
- 洛谷P4113 [HEOI2012]采花
题目描述 萧薰儿是古国的公主,平时的一大爱好是采花. 今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花. 花园足够大,容纳了n朵花,花有c种颜色(用整数1-c表示),且花是排成一排的,以便于 ...
- 去除 Git 安装后的右键菜单
64位 windows 8.1 安装 Git 后,右键菜单多了3个选项(Git Init Here,Git Gui, Git Bash),但是用不着,需要删掉.方法如下: 1.在 CMD 中进入 Gi ...
- leetcode--Learn one iterative inorder traversal, apply it to multiple tree questions (Java Solution)
will show you all how to tackle various tree questions using iterative inorder traversal. First one ...
- ACdream 1216——Beautiful People——————【二维LIS,nlogn处理】
Beautiful People Special Judge Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (J ...
- PowerShell 操作 OFFICE
UiPath操作Office软件的方式,这里说一下用PowerShell调用Office的COM组件的方式 老生常谈~每个程序员都要至少掌握一门脚本编程语言... EXCEL: $excel = Ne ...
- KBEngine warring项目源码阅读(一) 项目简介和注册
首先介绍下warring项目,是kbe自带的一个演示示例,大部分人了解kbe引擎也是从warring项目开始的. 项目地址:https://github.com/kbengine/kbengine_u ...
- bootstrapValidator 如何重新启用提交按钮
bootstrapValidator 使用中,由于字段检查等原因,致使提交按钮失效.如何重新启用提交按钮呢? 下面一句代码可以实现启用提交按钮: $('#loginForm').bootstrapVa ...