Description

题目链接:Codeforces

Solution

因为路线随机,所以找出各路线最短路必须经过的点,在这个点必定能上车

直接floyd暴力找割点

然后不断用k条公交车路线来更新DP答案,直到更新不了为止,dp[i]表示从点i到终点的答案

Code

#include <cstdio>
#include <algorithm>
#include <cstring>
#define N 1100
using namespace std; int n,m,g[N][N],S,T,s[N],t[N],dp[N],cnt[N],Ans[N];
bool cut[N][N],vis[N]; inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
} int dfs(int u,int cur){
if(vis[u]) return dp[u];
vis[u]=1;int tmp=-1;
for(int v=1;v<=n;++v)
if(g[u][v]==1&&g[u][t[cur]]==g[v][t[cur]]+1)
tmp=max(tmp,dfs(v,cur));
if(tmp==-1) tmp=1e9;
tmp=min(tmp,Ans[u]);
return dp[u]=tmp;
} int main(){
n=read(),m=read(),S=read(),T=read();
memset(g,0x3f,sizeof(g));
for(int i=1;i<=n;++i)g[i][i]=0;//注意自己到自己初始化为0
while(m--){
int u=read(),v=read();
g[u][v]=1;//有向图
}
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
m=read();
for(int k=1;k<=m;++k){
s[k]=read(),t[k]=read();
if(g[s[k]][t[k]]==0x3f3f3f3f)continue;//这里不特判会RE
for(int i=1;i<=n;++i)
if(g[s[k]][i]+g[i][t[k]]==g[s[k]][t[k]])
cnt[g[s[k]][i]]++;
for(int i=1;i<=n;++i)
if(g[s[k]][i]+g[i][t[k]]==g[s[k]][t[k]]){
if(cnt[g[s[k]][i]]==1) cut[k][i]=1;
cnt[g[s[k]][i]]=0;
}
} bool flag=1;
memset(dp,0x3f,sizeof(dp));
memset(Ans,0x3f,sizeof(Ans));
Ans[T]=0;
while(flag){
flag=0;
for(int i=1;i<=m;++i)
for(int j=1;j<=n;++j)
if(cut[i][j]){
memset(vis,0,sizeof(vis));
int tmp=dfs(j,i)+1;
if(Ans[j]>tmp){
flag=1;
Ans[j]=tmp;
}
}
}
if(Ans[S]>233) Ans[S]=-1;
printf("%d\n",Ans[S]);
return 0;
}

[CodeForces238E]Meeting Her(图论+记忆化搜索)的更多相关文章

  1. 非常完整的线性DP及记忆化搜索讲义

    基础概念 我们之前的课程当中接触了最基础的动态规划. 动态规划最重要的就是找到一个状态和状态转移方程. 除此之外,动态规划问题分析中还有一些重要性质,如:重叠子问题.最优子结构.无后效性等. 最优子结 ...

  2. [ACM_动态规划] 数字三角形(数塔)_递推_记忆化搜索

    1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> ...

  3. 【BZOJ-3895】取石子 记忆化搜索 + 博弈

    3895: 取石子 Time Limit: 1 Sec  Memory Limit: 512 MBSubmit: 263  Solved: 127[Submit][Status][Discuss] D ...

  4. hdu3555 Bomb (记忆化搜索 数位DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=3555 Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  5. zoj 3644(dp + 记忆化搜索)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4834 思路:dp[i][j]表示当前节点在i,分数为j的路径条数,从 ...

  6. loj 1044(dp+记忆化搜索)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26764 思路:dp[pos]表示0-pos这段字符串最少分割的回文 ...

  7. DP(记忆化搜索) + AC自动机 LA 4126 Password Suspects

    题目传送门 题意:训练指南P250 分析:DFS记忆化搜索,范围或者说是图是已知的字串构成的自动机图,那么用 | (1 << i)表示包含第i个字串,如果长度为len,且st == (1 ...

  8. HDU1978 记忆化搜索

    How many ways Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  9. bzoj4562: [Haoi2016]食物链--记忆化搜索

    这道题其实比较水,半个小时AC= =对于我这样的渣渣来说真是极大的鼓舞 题目大意:给出一个有向图,求入度为0的点到出度为0的点一共有多少条路 从入读为零的点进行记忆化搜索,搜到出度为零的点返回1 所有 ...

随机推荐

  1. bootstrap中文文档阅读记录

    2017年1月12日20:26:26http://v3.bootcss.com/components/#navbar

  2. 搭建Web开发环境JavaEE_Eclipse

    1. 下载和安装1.1 下载JDK在Java官方网站下载最新版本的 Java SE:  http://www.oracle.com/technetwork/java/javase/downloads/ ...

  3. 正交矩阵、正规矩阵和酉矩阵(转自Ramble Over The Cloud~)

    网址:http://blog.csdn.net/alec1987/article/details/7414450 在数学中,正规矩阵 是与自己的共轭转置交换的复系数方块矩阵,也就是说, 满足 其中 是 ...

  4. Poj(2236),简单并查集

    题目链接:http://poj.org/problem?id=2236 思路很简单,傻逼的我输出写成了FALL,然后遍历的时候for循环写错了,还好很快我就Debug出来了. #include < ...

  5. vuejs组件参数校验

    父组件向子组件传递一些参数,那么子组件有权对这些参数进行一个校验,这个就是组件参数校验 需求:父组件传递过来的必须是个字符串,这个要怎么去校验呢 <div id='root'> <c ...

  6. when 让你跳出异步回调噩梦 node.js下promise/A规范的使用

    其实关于promise 的博客,前端时间专门写了一篇关于 promise 规范的文章,promise规范 让 javascript 中的异步调用更加人性化. 简单回忆下: promise/A规范定义的 ...

  7. node.js 练习2 (调用函数)

    1. 调用本地 函数 (1)  创建 n2-1.js ,并输入代码 (2) 运行localhhost:8000 (3)在浏览器中 查看 (4)在cmd中查看 2.调用外部 函数 (1) 创建n2-2. ...

  8. 如何提高mysql的安全性?

    1.如果 MySQL 客户端和服务器端的连接需要跨越并通过不可信任的网络,那么需要使用 ssh 隧道来加密该连接的通信.2.使用 set password 语句来修改用户的密码,先“mysql -u ...

  9. java的四个元注解 @Retention @Target @Document @Inherited

    1.  @Retention  :注解的保留位置 @Retention(RetentionPolicy.SOURCE)  //注解仅存在于源码中,在class字节码文件中不包含 @Retention( ...

  10. 关于 ReactNative 环境搭建之 error: invalid developer directory '/Library/Developer/CommandLineTools' - RN

    简要说明,此次尝试安装 ReactNative 时当前 MacPro 版本为 10.13.6.Xcode 版本为 Version 9.4.1 (9F2000),按照官方的完整原生环境搭建流程一步步执行 ...