浮点型变量在计算机内存中占用4字节(Byte),即32-bit。遵循IEEE-754格式标准。
一个浮点数由2部分组成:底数m 和 指数e。
                         ±mantissa × 2exponent
 (注意,公式中的mantissa 和 exponent使用二进制表示)
底数部分 使用2进制数来表示此浮点数的实际值。
指数部分 占用8-bit的二进制数,可表示数值范围为0-255。 但是指数应可正可负,所以IEEE规定,此处算出的次方须减去127才是真正的指数。所以float的指数可从 -126到128.
底数部分实际是占用24-bit的一个值,由于其最高位始终为 1 ,所以最高位省去不存储,在存储中只有23-bit。
到目前为止, 底数部分 23位 加上指数部分 8位 使用了31位。那么前面说过,float是占用4个字节即32-bit,那么还有一位是干嘛用的呢?  还有一位,其实就是4字节中的最高位,用来指示浮点数的正负,当最高位是1时,为负数,最高位是0时,为正数。
   浮点数据就是按下表的格式存储在4个字节中:
     Address+0    Address+1    Address+2    Address+3
Contents    SEEE EEEE    EMMM MMMM    MMMM MMMM    MMMM MMMM     S: 表示浮点数正负,1为负数,0为正数
     E: 指数加上127后的值的二进制数
     M: 24-bit的底数(只存储23-bit)
主意:这里有个特例,浮点数 为0时,指数和底数都为0,但此前的公式不成立。因为2的0次方为1,所以,0是个特例。当然,这个特例也不用认为去干扰,编译器会自动去识别。

通过上面的格式,我们下面举例看下-12.5在计算机中存储的具体数据:
    Address+0    Address+1    Address+2    Address+3
Contents       0xC1                        0x48                          0x00                     0x00    接下来我们验证下上面的数据表示的到底是不是-12.5,从而也看下它的转换过程。
由于浮点数不是以直接格式存储,他有几部分组成,所以要转换浮点数,首先要把各部分的值分离出来。
    Address+0    Address+1    Address+2    Address+3
格式    SEEEEEEE    EMMMMMMM    MMMMMMMM    MMMMMMMM
二进制    11000001    01001000    00000000    00000000
16进制    C1                          48                           00                           00
      可见:
      S: 为1,是个负数。
      E:为 10000010  转为10进制为130,130-127=3,即实际指数部分为3.
      M:为 10010000000000000000000。 这里,在底数左边省略存储了一个1,使用 实际底数表示为 1.10010000000000000000000 
      到此,我们吧三个部分的值都拎出来了,现在,我们通过指数部分E的值来调整底数部分M的值。调整方法为:如果指数E为负数,底数的小数点向左移,如果指数E为正数,底数的小数点向右移。小数点移动的位数由指数E的绝对值决定。
     这里,E为正3,使用向右移3为即得:
     1100.10000000000000000000
至次,这个结果就是12.5的二进制浮点数,将他换算成10进制数就看到12.5了,如何转换,看下面:
 小数点左边的1100 表示为 (1 × 8) + (1 × 4) + (0 × 2) + (0 × 1), 其结果为 12 。
 小数点右边的 .100… 表示为 (1 × 2^(-1)) + (0 × 2^(-2)) + (0 × 2^(-3)) + ... ,其结果为.5 。
以上二值的和为12.5, 由于S 为1,使用为负数,即-12.5 。
所以,16进制 0XC1480000 是浮点数 -12.5 。

上面是如何将计算机存储中的二进制数如何转换成实际浮点数,下面看下如何将一浮点数装换成计算机存储格式中的二进制数。
举例将17.625换算成 float型。
首先,将17.625换算成二进制位:10001.101  ( 0.625 = 0.5+0.125, 0.5即 1/2, 0.125即 1/8 如果不会将小数部分转换成二进制,请参考其他书籍。) 再将 10001.101 向右移,直到小数点前只剩一位 成了 1.0001101 x 2的4次方(因为右移了4位)。此时 我们的底数M和指数E就出来了:
底数部分M,因为小数点前必为1,所以IEEE规定只记录小数点后的就好,所以此处底数为  0001101 。
指数部分E,实际为4,但须加上127,固为131,即二进制数 10000011 
符号部分S,由于是正数,所以S为0.
综上所述,17.625的 float 存储格式就是:
0 10000011 00011010000000000000000
转换成16进制:0x41 8D 00 00
所以,一看,还是占用了4个字节

float存储的更多相关文章

  1. 使用 float 存储小数?

    很多程序员就会使用 float 类型来存储小数.sql 的 float 类型和其他大多数编程语言的 float 类型一样, 根据IEEE 754 标准使用二进制格式编码实数数据. 但是很多程序员并不清 ...

  2. float存储方式编程验证

    取出float在内存中的编码: void printFloatAsBinary(float f){ // 二进制的位数 const int bits = sizeof(f) * 8; // 将floa ...

  3. float浮点数的二进制存储方式及转换

    int和float都是4字节32位表示形式.为什么float的范围大于int? float精度为6-7位.1.66*10^10的数字结果并不是166 0000 0000 指数越大,误差越大. 这些问题 ...

  4. 【解惑】剖析float型的内存存储和精度丢失问题

    问题提出:12.0f-11.9f=0.10000038,"减不尽"为什么? 现在我们就详细剖析一下浮点型运算为什么会造成精度丢失? 1.小数的二进制表示问题 首先我们要搞清楚下面两 ...

  5. C语言中 Float 数据结构的存储计算

    1.了解float存储结构 float存储结构请看另一篇文章http://blog.csdn.net/whzhaochao/article/details/12885875 2.float最大值 fl ...

  6. float和double的精度

    作者: jillzhang 联系方式:jillzhang@126.com 原网址:http://blog.csdn.net/wuna66320/article/details/1691734 1 范围 ...

  7. float,double和decimal的精度问题

    先标注一个音标,因为我老是读错:decimal ['desɪml] 精度对比: 类型 CTS 类型 描述 有效数字 范围 float System.Single 32-bit single-preci ...

  8. float类型进行计算精度丢失的问题

    今天一个案子,用户反映数量差异明明是 2.0-1.8,显示的结果却为0.20000005,就自己写了段方法测试了一下:package test1;public class Test2 {/*** @p ...

  9. 【转】JAVA程序中Float和Double精度丢失问题

    原文网址:http://blog.sina.com.cn/s/blog_827d041701017ctm.html 问题提出:12.0f-11.9f=0.10000038,"减不尽" ...

随机推荐

  1. php - empty() is_null() isset()的区别

    empty():当变量存在,并且是一个非空非零的值时,返回 FALSE,否则返回 TRUE. is_null():如果指定变量为 NULL,则返回 TRUE,否则返回 FALSE. isset():如 ...

  2. order-by-offset-fetch

  3. 手动完全卸载Office

    1 当然出现安装错误,或是无法安装先考虑官方卸载工具卸载,运行后要是解决了问题是最好的.毕竟手动删除比较麻烦. 开始我们先停止 Office Source Engine 服务.以windows7为例子 ...

  4. python-10多进程

    1-多进程(multiprocessing), 1个父进程可以有多少子进程 1.1下面的例子演示了启动一个子进程并等待其结束 from multiprocessing import Process i ...

  5. fromkeys语法/set集合/深浅拷贝/列表/字典的删除

    fromkeys语法: dic = {"apple":"苹果", "banana":"香蕉"} 返回新字典. 和原来的没 ...

  6. EVALUation mode running with code size limit:2k keil进行仿真过程中出现的报错

    EVALUation mode running with code size limit:2k 如果keil软件未破解,会限制程序的存储大小.第一是你的软件没有破解,不能编译2K以上的程序:这种情况下 ...

  7. Response响应工具类

    技术交流群: 233513714 import com.google.common.base.Objects; import java.io.Serializable; public class Re ...

  8. windows下进程间通信(转)

    摘 要 随着人们对应用程序的要求越来越高,单进程应用在许多场合已不能满足人们的要求.编写多进程/多线程程序成为现代程序设计的一个重要特点,在多进程程序设计中,进程间的通信是不可避免的.Microsof ...

  9. Java架构师必会的技能

    Java架构师必会的技能 我把它分为了五大专题 工程化专题 工程化专题 git git安装使用 git日常使用:fetch/pull/push/revert/rebase git分支管理git flo ...

  10. 关于 Google Chrome “Your connection is not private” 问题的处理

    今天下午访问google网站的时候,突然不能访问了,提示“Your connection is not private”(你的连接不是私密连接):查看XX-NET的设置,显示“请检查浏览器代理设置”. ...