题目大意:
  给你一个长度为$n(n\leq 50000)$的序列$A$,支持进行以下两种操作:
    1.将区间$[l,r]$中所有数加上$c$;
    2.询问区间$[l,r]$中小于$c^2$的数的个数。
思路:
  分块。
  对于整块的数据打标记,零散的数据直接修改。同时维护同一块中从小到大的顺序,统计时对于同一块中的数二分答案,零散的数直接统计。

 #include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<functional>
inline int getint() {
register char ch;
register bool neg=false;
while(!isdigit(ch=getchar())) if(ch=='-') neg=true;
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return neg?-x:x;
}
const int N=;
int val[N],s[N],tag[N],bel[N],begin[N],end[N];
inline bool cmp(const int &a,const int &b) {
return val[a]+tag[bel[a]]<val[b]+tag[bel[b]];
}
inline void modify(const int &l,const int &r,const int &c) {
if(bel[l]==bel[r]) {
for(register int i=l;i<=r;i++) val[i]+=c;
std::sort(&s[begin[bel[l]]],&s[end[bel[l]]]+,cmp);
return;
}
for(register int i=l;bel[i]==bel[l];i++) val[i]+=c;
std::sort(&s[begin[bel[l]]],&s[end[bel[l]]]+,cmp);
for(register int i=r;bel[i]==bel[r];i--) val[i]+=c;
std::sort(&s[begin[bel[r]]],&s[end[bel[r]]]+,cmp);
for(register int i=bel[l]+;i<bel[r];i++) tag[i]+=c;
}
inline int query(const int &l,const int &r,const int &c) {
int ret=;
val[]=c*c;
if(bel[l]==bel[r]) {
for(register int i=l;i<=r;i++) {
if(val[i]+tag[bel[i]]<val[]) ret++;
}
return ret;
}
for(register int i=l;bel[i]==bel[l];i++) {
if(val[i]+tag[bel[i]]<val[]) ret++;
}
for(register int i=r;bel[i]==bel[r];i--) {
if(val[i]+tag[bel[i]]<val[]) ret++;
}
for(register int i=bel[l]+;i<bel[r];i++) {
ret+=std::lower_bound(&s[begin[i]],&s[end[i]]+,,cmp)-&s[begin[i]];
}
return ret;
}
int main() {
const int n=getint(),block=sqrt(n);
for(register int i=;i<=n;i++) {
val[i]=getint();
bel[i]=i/block;
s[i]=i;
if(!begin[bel[i]]) begin[bel[i]]=i;
end[bel[i]]=i;
}
for(register int i=;i<=bel[n];i++) {
std::sort(&s[begin[i]],&s[end[i]]+,cmp);
}
for(register int i=;i<n;i++) {
const int opt=getint(),l=getint(),r=getint(),c=getint();
if(opt) {
printf("%d\n",query(l,r,c));
} else {
modify(l,r,c);
}
}
return ;
}

[LOJ6278]数列分块入门 2的更多相关文章

  1. [loj6278]数列分块入门2

    做法1 以$K$为块大小分块,并对每一个块再维护一个排序后的结果,预处理复杂度为$o(n\log K )$ 区间修改时将整块打上标记,散块暴力修改并归并排序,单次复杂度为$o(\frac{n}{K}+ ...

  2. 题解——loj6278 数列分块入门2 (分块)

    查询小于k的值 注意lower_bound一定要减去查找的起始位置得到正确的位置 调了快两天 淦 #include <cstdio> #include <algorithm> ...

  3. loj6278 数列分块入门题2

    题意:支持区间加,询问区间中元素排名 维护两个域.一个域维护原序列,一个域维护快内排序序列. 每次修改后更新快内排序序列. 修改时O(sqrt(n)log(sqrt(n))) 询问时O(sqrt(n) ...

  4. LOJ6277~6285 数列分块入门

    Portals 分块需注意的问题 数组大小应为,因为最后一个块可能会超出的范围. 当操作的区间在一个块内时,要特判成暴力修改. 要清楚什么时候应该+tag[t] 数列分块入门 1 给出一个长为的数列, ...

  5. 数列分块入门九题(三):LOJ6283~6285

    Preface 最后一题我一直觉得用莫队是最好的. 数列分块入门 7--区间乘法,区间加法,单点询问 还是很简单的吧,比起数列分块入门 7就多了个区间乘. 类似于线段树,由于乘法的优先级高于加法,因此 ...

  6. 数列分块入门九题(二):LOJ6280~6282

    Preface 个人感觉这中间的三题是最水的没有之一 数列分块入门 4--区间加法,区间求和 这个也是很多数据结构完爆的题目线段树入门题,但是练分块我们就要写吗 修改还是与之前类似,只不过我们要维护每 ...

  7. 数列分块入门九题(一):LOJ6277~6279

    Preface 分块,一个神奇的暴力算法.可以把很多\(O(n^2)\)的数据结构题的暴力优化到常数极小的\(O(n\sqrt n)\).当一些毒瘤题无法用线段树,主席树,平衡树,树状数组...... ...

  8. LOJ6285 数列分块入门9(分块)

    昨天对着代码看了一晚上 然后今天终于在loj上过了 数列分块入门9题撒花★,°:.☆( ̄▽ ̄)/$:.°★ . 然后相当玄学 块的大小调成\(\sqrt{n}\)会TLE,改成150就过了 啧 然后就 ...

  9. LOJ 6277:数列分块入门 1(分块入门)

    #6277. 数列分块入门 1 内存限制:256 MiB时间限制:100 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计讨论 3 测试数据 题目描述 给出一 ...

随机推荐

  1. REMIX与LOCALHOST相连

    REMIX与LOCALHOST相连 让Remix与本地文件系统进行交互,点击connect同时找到localhost下的Remix文件管理器的共享目录.在开始之前,参考网址: https://remi ...

  2. ftrace 简介

    ftrace 简介 ftrace 的作用是帮助开发人员了解 Linux 内核的运行时行为,以便进行故障调试或性能分析. 最早 ftrace 是一个 function tracer,仅能够记录内核的函数 ...

  3. rsync同步数据

    1. rsync 命令格式rsync [OPTION]... SRC DESTrsync [OPTION]... SRC [USER@]HOST:DESTrsync [OPTION]... [USER ...

  4. windows系统设备管理器显示全部硬件

    下面的小命令能让隐藏的未卸载掉的硬件设备彻底现身:开始-运行-CMD C:\> C:\>start devmgmt.msc 之后再在Windows 的设备管理器中,单击菜单“显示”-“显示 ...

  5. 【bzoj3029】守卫者的挑战 概率dp

    题目描述 给出一个数$m$和$n$次操作,第$i$操作有$p_i$的概率成功,成功后会使$m$加上$a_i$($a_i$为正整数或$-1$),求$n$次操作以后成功的操作次数不少于$l$且$m\ge ...

  6. For Path

    /****** Script for SelectTopNRows command from SSMS ******/ DECLARE @table TABLE (姓名 VARCHAR(10),课程 ...

  7. async-http

    android-async-http开源框架可以是我们轻松的获取网络数据或者向服务器发送数据,使用起来也很简单,下面做简单介绍,具体详细使用看官网:https://github.com/loopj/a ...

  8. 插件安装:包管理器——Package Control

    首先,按CTRL+`,打开控制台   粘贴下面的代码,之后回车 如果是sublime3 ? 1 import urllib.request,os,hashlib; h = '7183a2d3e96f1 ...

  9. .com和.cn域名的区别所在,各个域名后缀含义

    很多人在注册域名的时候不明白域名后缀的含义,在这里就介绍两种最为常用的域名,介绍下他们的区别以及适用的范围.需要先查询是否被注册,我们经常去的就是西部数据和万网,查询并注册未被注册的域名,一般无论是什 ...

  10. Spring Cloud配置文件加载优先级简述

    Spring Cloud中配置文件的加载机制与其它的Spring Boot应用存在不一样的地方:如它引入了bootstrap.properties的配置文件,同时也支持从配置中心中加载配置文件等:本文 ...