[LOJ6179]Pyh的求和
首先有一个等式是$\varphi(ab)=\frac{\varphi(a)\varphi(b)d}{\varphi(d)}$,其中$d=(a,b)$,这个比较好证,直接按展开式计算可得$\varphi(ab)\varphi(d)=\varphi(a)\varphi(b)d$(等号两边$d$的质因子都出现了两次)
然后推式子,得到$\sum\limits_{T=1}^nf(T)g\left(\left\lfloor\frac nT\right\rfloor,T\right)g\left(\left\lfloor\frac mT\right\rfloor,T\right)$,其中$f(n)=\sum\limits_{d|n}\mu\left(\frac nd\right)\frac d{\varphi(d)},g(n,k)=\sum\limits_{i=1}^n\varphi(ik)$
$f$可以枚举$d$更新倍数预处理,关键在于快速求$g$
我们先对每个$k$预处理$g\left(1\cdots\left\lfloor\frac nk\right\rfloor,k\right)$,这是$O(n\log n)$的
用分段的思想,设一个阈值$C$,对于$\leq\frac nC$的$T$用预处理好的$g$暴力求值,若$T\gt\frac nC$,这时$\left\lfloor\frac nT\right\rfloor\leq C$,我们再预处理$h_{i,j,k}=f(k)\sum\limits_{t=1}^i\varphi(tk)\sum\limits_{t=1}^j\varphi(tk)$,用$h$还有根号分段算剩下的部分
#include<stdio.h>
typedef long long ll;
const int mod=998244353,T=100000,C=30;
void swap(int&a,int&b){a^=b^=a^=b;}
int min(int a,int b){return a<b?a:b;}
int mul(int a,int b){return a*(ll)b%mod;}
int ad(int a,int b){return(a+b)%mod;}
int de(int a,int b){return(a-b)%mod;}
void inc(int&a,int b){(a+=b)%=mod;}
int pow(int a,int b){
int s=1;
while(b){
if(b&1)s=mul(s,a);
a=mul(a,a);
b>>=1;
}
return s;
}
int pr[T+10],phi[T+10],mu[T+10];
bool np[T+10];
void sieve(){
int i,j,M=0;
phi[1]=1;
mu[1]=1;
for(i=2;i<=T;i++){
if(!np[i]){
pr[++M]=i;
phi[i]=i-1;
mu[i]=-1;
}
for(j=1;j<=M&&i*pr[j]<=T;j++){
np[i*pr[j]]=1;
if(i%pr[j]==0){
phi[i*pr[j]]=phi[i]*pr[j];
break;
}
phi[i*pr[j]]=phi[i]*(pr[j]-1);
mu[i*pr[j]]=-mu[i];
}
}
}
int f[T+10],*g[T+10],*h[40][40];
int get(int n,int m){
if(n>m)swap(n,m);
int i,nex,s;
s=0;
for(i=1;i<=min(T/C,n);i++)inc(s,mul(f[i],mul(g[i][n/i],g[i][m/i])));
for(;i<=n;i=nex+1){
nex=min(n/(n/i),m/(m/i));
inc(s,de(h[n/i][m/i][nex-T/C],h[n/i][m/i][i-1-T/C]));
}
return ad(s,mod);
}
int main(){
sieve();
int i,j,k,t,x,y,cas,n,m;
for(i=1;i<=T;i++){
t=mul(i,pow(phi[i],mod-2));
for(j=i;j<=T;j+=i)inc(f[j],mul(mu[j/i],t));
}
for(j=1;j<=T;j++){
g[j]=new int[T/j+1];
g[j][0]=0;
for(i=1;i<=T/j;i++)g[j][i]=ad(g[j][i-1],phi[i*j]);
}
for(i=1;i<=C;i++){
for(j=1;j<=C;j++){
h[i][j]=new int[min(T/i,T/j)-T/C+2];
h[i][j][0]=0;
}
}
for(k=T/C+1;k<=T;k++){
x=0;
t=k-T/C;
for(i=1;i<=T/k;i++){
inc(x,phi[i*k]);
y=0;
for(j=1;j<=T/k;j++){
inc(y,phi[j*k]);
h[i][j][t]=ad(h[i][j][t-1],mul(mul(x,y),f[k]));
}
}
}
scanf("%d",&cas);
while(cas--){
scanf("%d%d",&n,&m);
printf("%d\n",get(n,m));
}
}
[LOJ6179]Pyh的求和的更多相关文章
- 【loj6179】Pyh的求和
Portal -->loj6179 Solution 这题其实有一个式子一喵一样的版本在bzoj,但是那题是\(m\)特别大然后只有一组数据 这题多组数据== 首先根据\(\v ...
- loj #6179. Pyh 的求和 莫比乌斯反演
题目描述 传送门 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^m \varphi(ij)(mod\ 998244353)\) \(T\) 组询问 \(1 \leq ...
- Java程序:从命令行接收多个数字,求和并输出结果
一.设计思想:由于命令行接收的是字符串类型,因此应先将字符串类型转化为整型或其他字符型,然后利用for循环求和并输出结果 二.程序流程图: 三.源程序代码: //王荣荣 2016/9/23 ...
- Java之递归求和的两张方法
方法一: package com.smbea.demo; public class Student { private int sum = 0; /** * 递归求和 * @param num */ ...
- EXCEL中对1个单元格中多个数字求和
如A1=3779.3759.3769.3781.3750,A2对A1中4个数字求和怎么求!请高手赐教! 方法一:在B1中输入公式=SUM(MID(A1,{1,6,11,16,21},4)*1) 方法二 ...
- codevs 1082 线段树区间求和
codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...
- 从sum()求和引发的思考
sum()求和是一个非常简单的函数,以前我的写法是这样,我想大部分和我一样刚开始学习JS的同学写出来的也会是这样. function sum() { var total=null; for(var i ...
- //给定N个整数序列{A1,A2,A3...An},求函数f(i,j)=(k=i~j)Ak的求和
//给定N个整数序列{A1,A2,A3...An},求函数f(i,j)=(k=i~j)Ak的求和 # include<stdio.h> void main() { ,sum1; ]={,- ...
- Ajax中get请求和post请求
我们在使用Ajax向服务器发送数据时,可以采用Get方式请求服务器,也可以使用Post方式请求服务器,那么什么时候该采用Get方式,什么时候该采用Post方式呢? Get请求和Post请求的区别: 1 ...
随机推荐
- 加overflow-hidden就可以解决高度塌陷问题,overflow-触发BFC
1.BFC 全称是块级排版上下文,用于对块级元素排版,默认情况下只有根元素(body)一个块级上下文,但是如果一个块级元素 设置了float:left,overflow:hidden或position ...
- tensorflow常用函数解析
一.tf.transpose函数的用法 tf.transpose(input, [dimension_1, dimenaion_2,..,dimension_n]):这个函数主要适用于交换输入张量的不 ...
- Python模块学习 - click
Click模块 click模块是Flask的作者开发的一个第三方模块,用于快速创建命令行.它的作用与Python标准库的argparse相同,但是,使用起来更简单. click是一个第三方库,因此使用 ...
- mysql cast函数
CAST函数语法规则是:Cast(字段名 as 转换的类型 ),其中类型可以为: CHAR[(N)] 字符型 DATE 日期型DATETIME 日期和时间型DECIMAL float型SIGNED i ...
- centos_7.1.1503_src_7
http://vault.centos.org/7.1.1503/os/Source/SPackages/ tex-fonts-hebrew-0.1-21.el7.src.rpm 05-Jul-201 ...
- Centos_Lvm expand capacity without restarting CentOS
Rescan the new disk(/dev/sdb): #ls /sys/class/scsi_host/ host0 host1 host2 [root@db210_13:56:14 /dat ...
- mac系统中实现vitualBox中访问内网端口
第一步,增加外网网段 打开vitualbox后,按管理菜单,点击->主机网络管理器,如图1所示.点击创建,创建下个网络主机. 图1 然后,关掉虚拟机,虚拟机的设置中,找到网络选项卡,然后点击网络 ...
- 在 Visual Studio 中使用正则表达式
Visual Studio 使用 .NET framework 正则表达式查找和替换文本. 在 Visual Studio 2010 和早期版本中,Visual Studio 在“查找和替换”窗口中使 ...
- MySQL取得某一范围随机数(MySQL随机数)
若要在i ≤ R ≤ j 这个范围得到一个随机整数R ,需要用到表达式 FLOOR(i + RAND() * (j – i + 1)). 例如, 若要在7 到 12 的范围(包括7和12)内得到一个随 ...
- linux命令(27):cat命令
实例一:把 log2012.log 的文件内容加上行号后输入 log2013.log 这个文件里 cat -n log2012.log log2013.log 实例二:把 log2012.log 和 ...