Rooted Trees

A graph G = (VE) is a data structure where V is a finite set of vertices and E is a binary relation on Vrepresented by a set of edges. Fig. 1 illustrates an example of a graph (or graphs).


Fig. 1

A free tree is a connnected, acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. A vertex of a rooted tree is called "node."

Your task is to write a program which reports the following information for each node u of a given rooted tree T:

  • node ID of u
  • parent of u
  • depth of u
  • node type (root, internal node or leaf)
  • a list of chidlren of u

If the last edge on the path from the root r of a tree T to a node x is (px), then p is the parent of x, and xis a child of p. The root is the only node in T with no parent.

A node with no children is an external node or leaf. A nonleaf node is an internal node

The number of children of a node x in a rooted tree T is called the degree of x.

The length of the path from the root r to a node x is the depth of x in T.

Here, the given tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Fig. 2 shows an example of rooted trees where ID of each node is indicated by a number in a circle (node). The example corresponds to the first sample input.


Fig. 2

Input

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node u is given in the following format:

id k cc2 ... ck

where id is the node ID of uk is the degree of uc1 ... ck are node IDs of 1st, ... kth child of u. If the node does not have a child, the k is 0.

Output

Print the information of each node in the following format ordered by IDs:

node id: parent = p , depth = dtype, [c1...ck]

p is ID of its parent. If the node does not have a parent, print -1.

d is depth of the node.

type is a type of nodes represented by a string (root, internal node or leaf). If the root can be considered as a leaf or an internal node, print root.

c1...ck is the list of children as a ordered tree.

Please follow the format presented in a sample output below.

Constraints

  • 1 ≤ n ≤ 100000

Sample Input 1

13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0

Sample Output 1

node 0: parent = -1, depth = 0, root, [1, 4, 10]
node 1: parent = 0, depth = 1, internal node, [2, 3]
node 2: parent = 1, depth = 2, leaf, []
node 3: parent = 1, depth = 2, leaf, []
node 4: parent = 0, depth = 1, internal node, [5, 6, 7]
node 5: parent = 4, depth = 2, leaf, []
node 6: parent = 4, depth = 2, leaf, []
node 7: parent = 4, depth = 2, internal node, [8, 9]
node 8: parent = 7, depth = 3, leaf, []
node 9: parent = 7, depth = 3, leaf, []
node 10: parent = 0, depth = 1, internal node, [11, 12]
node 11: parent = 10, depth = 2, leaf, []
node 12: parent = 10, depth = 2, leaf, []

Sample Input 2

4
1 3 3 2 0
0 0
3 0
2 0

Sample Output 2

node 0: parent = 1, depth = 1, leaf, []
node 1: parent = -1, depth = 0, root, [3, 2, 0]
node 2: parent = 1, depth = 1, leaf, []
node 3: parent = 1, depth = 1, leaf, []

Note

You can use a left-child, right-sibling representation to implement a tree which has the following data:

  • the parent of u
  • the leftmost child of u
  • the immediate right sibling of u

Reference

Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The MIT Press.

有根树的存储, 根据数据看出不是二叉树, 故用孩子兄弟表示法存储(左孩子, 右兄弟)

利用递归求树的深度时, 若是左孩子则深度加一, 右孩子(兄弟节点)还是当前深度

#include <iostream>
using namespace std;
#define MAX 100005
#define NIL -1 struct Node {
int parent;
int left;
int right;
}; Node T[MAX];
int n, D[MAX]; void print(int u)
{
int i, c;
cout << "node " << u << ": ";
cout << "parent = " << T[u].parent << ", ";
cout << "depth = " << D[u] << ", "; if(T[u].parent == NIL)
{
cout << "root, ";
}
else if(T[u].left == NIL)
{
cout << "leaf, ";
}
else
{
cout << "internal node, ";
} cout << "["; for(i = 0, c = T[u].left; c != NIL; ++ i, c = T[c].right)
{
if(i) cout << ", ";
cout << c;
} cout << "]" << endl;
} // 递归求深度
void rec(int u, int p)
{
D[u] = p;
if(T[u].right != NIL)
{
rec(T[u].right, p);
}
if(T[u].left != NIL)
{
rec(T[u].left, p + 1);
}
} int main()
{
int i, j, d, v, c, l, r;
cin >> n;
for(i = 0; i < n; ++ i)
{
T[i].parent = T[i].left = T[i].right = NIL;
} for(i = 0; i < n; ++ i)
{
cin >> v >> d;
for(j = 0; j < d; ++ j)
{
cin >> c;
if(j == 0)
{
T[v].left = c; // 父节点的左孩子为c
}
else
{
T[l].right = c; // 当前兄弟节点为c
}
l = c; // 记录前一个兄弟节点
T[c].parent = v;
}
}
for(i = 0; i < n; ++ i)
{
if(T[i].parent == NIL)
{
r = i;
}
} rec(r, 0); for(i = 0; i < n; ++ i)
{
print(i);
} return 0;
} /*
13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0
*/

  

Tree - Rooted Trees的更多相关文章

  1. HDU p1294 Rooted Trees Problem 解题报告

    http://www.cnblogs.com/keam37/p/3639294.html keam所有 转载请注明出处 Problem Description Give you two definit ...

  2. 【Aizu - ALDS1_7_A】Rooted Trees(树的表达)

    Rooted Trees Descriptions: A graph G = (V, E) is a data structure where V is a finite set of vertice ...

  3. 有根树的表达 Aizu - ALDS1_7_A: Rooted Trees

    有根树的表达 题目:Rooted Trees Aizu - ALDS1_7_A  A graph G = (V, E) is a data structure where V is a finite ...

  4. 10.3 Implementing pointers and objects and 10.4 Representing rooted trees

    Algorithms 10.3 Implementing pointers and  objects  and 10.4 Representing rooted trees Allocating an ...

  5. HDU1294 Rooted Trees Problem(整数划分 组合数学 DP)

    讲解见http://www.cnblogs.com/IMGavin/p/5621370.html, 4 可重组合 dfs枚举子树的节点个数,相乘再累加  1 #include<iostream& ...

  6. HDU 1294 Rooted Trees Problem

    题目大意:求有n个节点的树有几种? 题解:http://www.cnblogs.com/keam37/p/3639294.html #include <iostream> typedef ...

  7. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  8. Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  9. LeetCode Minimum Height Trees

    原题链接在这里:https://leetcode.com/problems/minimum-height-trees/ 题目: For a undirected graph with tree cha ...

随机推荐

  1. 如何高效的算出2x8的值

    原文出自:https://blog.csdn.net/seesun2012 位移算法,如何高效的算出2*8的值,为什么8<<1,4<<2,2<<3,1<< ...

  2. C#基础 (一)

    值类型和引用类型 堆和栈 栈存放的数据: (1)某些类型变量的值(2)程序当前的执行环境(3)传递给方法的参数 堆是存放对象的地方 对象类型有两种: 值类型和引用类型,他们的存储方式不同值类型: 只需 ...

  3. HDU 4283 (第k个出场 区间DP)

    http://blog.csdn.net/acm_cxlove/article/details/7964594 http://www.tuicool.com/articles/jyaQ7n http: ...

  4. 介绍一款小众的IDE

    作为前端工程师的你们平时主要使用什么IDE,atom.webstorm.sublime还是vscode? 今天介绍一款比较小众的IDE,Adobe的开源项目Brackets,提供Windows和OS ...

  5. 将ojdbc 添加到maven

    去oracle官网下载jar包 然后在jar包所在目录输入maven命令 mvn install:install-file -DgroupId=com.oracle -DartifactId=ojdb ...

  6. npm全局安装失效修复

    一.windows下 先查看npm包的默认安装目录 npm config get prefix 修改配置 npm config set prefix "nodeJs的安装目录" 二 ...

  7. web前端开发需要具备的技能

    web前端开发需要具备以下7种技能: 1.页面标记(HTML) HTML页面固定,标签不多,相对来说学起来比较容易.编写HTML代码需遵循HTML代码规范(http://www.cnblogs.com ...

  8. 原生JS,运动的小人

    今天突然想起来,不知道在什么网站上看的一个纯纯的原生JS写的效果,运动的小人,所以在这里给大家分享一下代码: 并说明:这不是本人写的,而是我在浏览网站是无意中发现的,现在已经不记得是哪个网站了,但是要 ...

  9. RN记录

    react-native run-android 出现 java.lang.nullpointerexception(no error message) 错误 删除 工程目录\android.grad ...

  10. C#获取apk版本信息

    获取很多人都会问我为什么要写这个博客,原因很简单,这次研发apk版本信息的时候网上查了很多的资料都没有这方面的信息,因此这次功能完了想写下方法,如果以后博友们遇到了可以直接copy,不用花很多的时间, ...