Rooted Trees

A graph G = (VE) is a data structure where V is a finite set of vertices and E is a binary relation on Vrepresented by a set of edges. Fig. 1 illustrates an example of a graph (or graphs).


Fig. 1

A free tree is a connnected, acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. A vertex of a rooted tree is called "node."

Your task is to write a program which reports the following information for each node u of a given rooted tree T:

  • node ID of u
  • parent of u
  • depth of u
  • node type (root, internal node or leaf)
  • a list of chidlren of u

If the last edge on the path from the root r of a tree T to a node x is (px), then p is the parent of x, and xis a child of p. The root is the only node in T with no parent.

A node with no children is an external node or leaf. A nonleaf node is an internal node

The number of children of a node x in a rooted tree T is called the degree of x.

The length of the path from the root r to a node x is the depth of x in T.

Here, the given tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Fig. 2 shows an example of rooted trees where ID of each node is indicated by a number in a circle (node). The example corresponds to the first sample input.


Fig. 2

Input

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node u is given in the following format:

id k cc2 ... ck

where id is the node ID of uk is the degree of uc1 ... ck are node IDs of 1st, ... kth child of u. If the node does not have a child, the k is 0.

Output

Print the information of each node in the following format ordered by IDs:

node id: parent = p , depth = dtype, [c1...ck]

p is ID of its parent. If the node does not have a parent, print -1.

d is depth of the node.

type is a type of nodes represented by a string (root, internal node or leaf). If the root can be considered as a leaf or an internal node, print root.

c1...ck is the list of children as a ordered tree.

Please follow the format presented in a sample output below.

Constraints

  • 1 ≤ n ≤ 100000

Sample Input 1

13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0

Sample Output 1

node 0: parent = -1, depth = 0, root, [1, 4, 10]
node 1: parent = 0, depth = 1, internal node, [2, 3]
node 2: parent = 1, depth = 2, leaf, []
node 3: parent = 1, depth = 2, leaf, []
node 4: parent = 0, depth = 1, internal node, [5, 6, 7]
node 5: parent = 4, depth = 2, leaf, []
node 6: parent = 4, depth = 2, leaf, []
node 7: parent = 4, depth = 2, internal node, [8, 9]
node 8: parent = 7, depth = 3, leaf, []
node 9: parent = 7, depth = 3, leaf, []
node 10: parent = 0, depth = 1, internal node, [11, 12]
node 11: parent = 10, depth = 2, leaf, []
node 12: parent = 10, depth = 2, leaf, []

Sample Input 2

4
1 3 3 2 0
0 0
3 0
2 0

Sample Output 2

node 0: parent = 1, depth = 1, leaf, []
node 1: parent = -1, depth = 0, root, [3, 2, 0]
node 2: parent = 1, depth = 1, leaf, []
node 3: parent = 1, depth = 1, leaf, []

Note

You can use a left-child, right-sibling representation to implement a tree which has the following data:

  • the parent of u
  • the leftmost child of u
  • the immediate right sibling of u

Reference

Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The MIT Press.

有根树的存储, 根据数据看出不是二叉树, 故用孩子兄弟表示法存储(左孩子, 右兄弟)

利用递归求树的深度时, 若是左孩子则深度加一, 右孩子(兄弟节点)还是当前深度

#include <iostream>
using namespace std;
#define MAX 100005
#define NIL -1 struct Node {
int parent;
int left;
int right;
}; Node T[MAX];
int n, D[MAX]; void print(int u)
{
int i, c;
cout << "node " << u << ": ";
cout << "parent = " << T[u].parent << ", ";
cout << "depth = " << D[u] << ", "; if(T[u].parent == NIL)
{
cout << "root, ";
}
else if(T[u].left == NIL)
{
cout << "leaf, ";
}
else
{
cout << "internal node, ";
} cout << "["; for(i = 0, c = T[u].left; c != NIL; ++ i, c = T[c].right)
{
if(i) cout << ", ";
cout << c;
} cout << "]" << endl;
} // 递归求深度
void rec(int u, int p)
{
D[u] = p;
if(T[u].right != NIL)
{
rec(T[u].right, p);
}
if(T[u].left != NIL)
{
rec(T[u].left, p + 1);
}
} int main()
{
int i, j, d, v, c, l, r;
cin >> n;
for(i = 0; i < n; ++ i)
{
T[i].parent = T[i].left = T[i].right = NIL;
} for(i = 0; i < n; ++ i)
{
cin >> v >> d;
for(j = 0; j < d; ++ j)
{
cin >> c;
if(j == 0)
{
T[v].left = c; // 父节点的左孩子为c
}
else
{
T[l].right = c; // 当前兄弟节点为c
}
l = c; // 记录前一个兄弟节点
T[c].parent = v;
}
}
for(i = 0; i < n; ++ i)
{
if(T[i].parent == NIL)
{
r = i;
}
} rec(r, 0); for(i = 0; i < n; ++ i)
{
print(i);
} return 0;
} /*
13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0
*/

  

Tree - Rooted Trees的更多相关文章

  1. HDU p1294 Rooted Trees Problem 解题报告

    http://www.cnblogs.com/keam37/p/3639294.html keam所有 转载请注明出处 Problem Description Give you two definit ...

  2. 【Aizu - ALDS1_7_A】Rooted Trees(树的表达)

    Rooted Trees Descriptions: A graph G = (V, E) is a data structure where V is a finite set of vertice ...

  3. 有根树的表达 Aizu - ALDS1_7_A: Rooted Trees

    有根树的表达 题目:Rooted Trees Aizu - ALDS1_7_A  A graph G = (V, E) is a data structure where V is a finite ...

  4. 10.3 Implementing pointers and objects and 10.4 Representing rooted trees

    Algorithms 10.3 Implementing pointers and  objects  and 10.4 Representing rooted trees Allocating an ...

  5. HDU1294 Rooted Trees Problem(整数划分 组合数学 DP)

    讲解见http://www.cnblogs.com/IMGavin/p/5621370.html, 4 可重组合 dfs枚举子树的节点个数,相乘再累加  1 #include<iostream& ...

  6. HDU 1294 Rooted Trees Problem

    题目大意:求有n个节点的树有几种? 题解:http://www.cnblogs.com/keam37/p/3639294.html #include <iostream> typedef ...

  7. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  8. Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  9. LeetCode Minimum Height Trees

    原题链接在这里:https://leetcode.com/problems/minimum-height-trees/ 题目: For a undirected graph with tree cha ...

随机推荐

  1. [转]Entity Framework Refresh context?

    本文转自:http://stackoverflow.com/questions/20270599/entity-framework-refresh-context If you want to rel ...

  2. Expression Blend实例中文教程(9) - 行为快速入门Behaviors

    在Blend强大的设计功能支持下,设计人员和开发人员可以无代码实现Silverlight/WPF动画效果,例如上文介绍的StoryBoard,就是一个典型例子,设计人员和开发人员仅需提供必要元素,即可 ...

  3. 2017年11月28日 C#进程和线程

    进程 需要放using System.Diagnostics;才可以用进程 用时的方法名为Process 用两个按钮一个为选择文件夹一个为打开可以打开系统内的进程. 注意:打开时一定要用进程名 Pro ...

  4. mac 好用软件地址存储

    Navicat Premium 12.0.24 for mac已破解中文 https://www.52pojie.cn/thread-727433-1-1.html sublime 破解方法https ...

  5. python os.popen 乱码问题

    os.popen('ipconfig') 命令返回的结果在调试时乱码了: output1 = os.popen('ipconfig') o1=output1.read() 我猜这里输出的内容要和控制台 ...

  6. pyhton中list的基本操作

    list:可以按规则,按顺序,存取大量数据 1.增 append() 在列表尾部追加元素 insert() 按照列表索引添加元素 extend() 迭代添加元素,一次添加多个元素 2.删 pop() ...

  7. Jquery trigger 与 triggerHandler

    secying Jquery trigger与triggerHandler trigger: 在每一个匹配的元素上触发某类事件(即触发jQuery对象集合中每一个元素). 这个函数也会导致浏览器同名的 ...

  8. recommendation baselines

    整理recommendation baseline 的实现代码和方法归类: bpr:  https://github.com/gamboviol/bpr fpmc:  https://github.c ...

  9. Netty相关面试题

    1.BIO.NIO和AIO的区别? BIO:一个连接一个线程,客户端有连接请求时服务器端就需要启动一个线程进行处理.线程开销大. 伪异步IO:将请求连接放入线程池,一对多,但线程还是很宝贵的资源. N ...

  10. python 测试:wraps

    任务: 现有两个函数: def print1(): print("I am print1") def print2(): print("I am print2" ...